A new ancient DNA study bolsters accounts that European arrival in the Americas decimated indigenous populations.
An
international team of scientists has sequenced mitochondrial DNA from
skeletons and mummies of indigenous Americans ranging from 8,600 to 500
years ago. They compared this new data to the DNA of modern Native
American populations and found that the old sequences were mysteriously
missing.
This doesn't mean that all indigenous Americans died off,
study lead author Bastien Llamas points out. There still are Native
Americans alive today across both continents. But of the 92 archaic
individuals that the team looked at, none of their mitochondrial
sequences survived to the present day.
It could have been disease, warfare, societal collapse or
some other catastrophe, Dr. Llamas tells The Christian Science Monitor.
What the study indicates is that something significant happened to
reduce the genetic diversity of this population in the past 500 or so
years. Christopher Columbus's expedition that brought him to the
Americas was in 1492.
But historical accounts suggested the
European arrival coincided with a significant reduction of the
populations already living in South, Central, and North America.
Estimates have ranged from around 50 to 90 percent of the population
died off at the time. "Even those low, low numbers, that's an incredible
calamity," John Walker, an archeologist at the University of Central
Florida who was not part of the study, tells the Monitor.
The study,
published Friday in the journal Science Advances,
wasn't about just one moment in the early history of the Americas. The
research team also found clues into the initial peopling of the region.
"We
knew that Native Americans living today have a relatively low genetic
diversity," Llamas says. "Meaning it is highly likely that some time in
the past, they lost some of their genetic diversity in what we call a
bottleneck."
"Was it because of Europeans? Or was it because of
the very early events that led to the peopling of the Americas?" he
says. According to Llamas' research, "a combination of both" shaped
Native American genomes.
Telling the tale of the peopling of the Americas
Llamas
and his team combined their genetic data with archeological, geological
and other evidence to model what might have happened. The story goes
something like this:
During the last ice age, sea levels were
significantly lower. At the time, there was a large swath of land where
the Bering strait is now, between Alaska and Siberia. That region,
called Beringia, formed a sort of land bridge connecting the two
continents.
The genetic data shows the most recent population
divergence between Siberians and Native Americans to be 24,900 years
ago, suggesting that's around when people started moving into the far
reaches of North America. There, these early Americans developed their
own, unique, signature genetic lineage that persists among Native
Americans today.
But when they arrived, they would have been
greeted by humongous ice sheets that covered what is now Canada. So
these first Americans
hunkered down in Beringia for awhile.
What
happened next has been an issue of debate among researchers. For
decades, the predominant explanation among researchers was the Clovis
First Model, which suggested the Clovis people – a prehistoric culture
known for their distinctive fluted stone spear points – were the first
to move south, around 13,000 years ago. But many archeological finds
have since shown that people were as far as Chile
by 14,000 years ago.
These
mitochondrial DNA findings are "more or less consistent with the
archaeological data," Theodore Schurr, an anthropologist at the
University of Pennsylvania who was not part of the study, tells the
Monitor in a phone interview. According to the genes, people started
leaving Beringia around 16,000 years ago, likely trekking along the
Pacific coast where a corridor would have opened up.
Genetic
diversity greatly increased after that time, says Llamas. That suggests a
significant population increase. And Beringia, cold, stark, and
confined, would likely not have supported a large population.
As
the people started moving south, some settled in groups along the way.
As these separate groups established themselves, they too developed
unique lineages.
This model "seems to fit very nicely," Dennis L.
Jenkins, an archeologist at the University of Oregon who was not part
of the study, tells the Monitor. "Right now it does match what is
commonly accepted among the majority of first colonization studiers."
But, he cautions, the Clovis First Model seemed like a perfect fit at
one time too.
Does the DNA tell the whole story?
No.
Mitochondrial
DNA is just a portion of the human genetics. These genes are passed
only from mother to child, so represent only maternal lineages, say
scientists.
Furthermore, Llamas says, ancient specimens that the
researchers can extract DNA from are limited. In this study, most of the
ancient individuals are from Bolivia, Chile, and Peru. So, he says,
"there may have been some kind of bias in our sampling."
As such,
"The conclusions that we have drawn from this dataset may change in the
future when we gather more data," he says. "It's an ongoing story."
Dr.
Jenkins agrees that more research and more genetic data is necessary to
fill out the picture. "I think that DNA in archeology is just going to
get stronger as time goes on and I would hope that more archeologists
would begin thinking and sampling in such ways that we can explore the
genetic evidence that's around us all the time," he says. "It's going to
become a really great tool for archeology."
"Ancient DNA is
critical for understanding these details because it provides us with a
direct snapshot of genetic diversity in the past, which can then be used
to infer details about human history, including estimates of past
population size, ancestor-descendent relationships, and population
divergence. These are details which aren’t necessarily obtainable from
archaeological or paleo-climate data," Jennifer Raff, a biological
anthropologist at the University of Kansas who was not part of this
study, tells the Monitor in an email.
Dr. Walker adds, "The use of DNA from pre-Columbian people is very innovative, it makes a lot of sense."
And
this research won't just inspire more ancient DNA research, "Speaking
as an archaeologist, I would see it as a reason to do more
archaeological research" to confirm their models, Walker says.
No comments:
Post a Comment