Sunday, July 21, 2013

What is Earth's Magnetic Field?

Wikipedia Earth's Magnetic Field

Earth's magnetic field

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Computer simulation of the Earth's field in a normal period between reversals.[1] The lines represent magnetic field lines, blue when the field points towards the center and yellow when away. The rotation axis of the Earth is centered and vertical. The dense clusters of lines are within the Earth's core.[2]
Earth's magnetic field (also known as the geomagnetic field) is the magnetic field that extends from the Earth's inner core to where it meets the solar wind, a stream of energetic particles emanating from the Sun. Its magnitude at the Earth's surface ranges from 25 to 65 µT (0.25 to 0.65 G). It is approximately the field of a magnetic dipole tilted at an angle of 11 degrees with respect to the rotational axis—as if there were a bar magnet placed at that angle at the center of the Earth. However, unlike the field of a bar magnet, Earth's field changes over time because it is generated by the motion of molten iron alloys in the Earth's outer core (the geodynamo).
The North Magnetic Pole wanders, but does so slowly enough that a simple compass remains useful for navigation. However, at random intervals, which average about several hundred thousand years, the Earth's field reverses, which causes the north and South Magnetic Poles to change places with each other. These reversals of the geomagnetic poles leave a record in rocks that allow paleomagnetists to calculate past motions of continents and ocean floors as a result of plate tectonics.
The region above the ionosphere is called the magnetosphere, and extends several tens of thousands of kilometers into space. This region protects the Earth from cosmic rays that would otherwise strip away the upper atmosphere, including the ozone layer that protects the earth from harmful ultraviolet radiation.

Importance

The magnetic field of the Earth largely deflects most of the charged particles emanating from the Sun, thus protecting it from this solar wind. These particles would strip away the ozone layer, which protects the Earth from harmful ultraviolet rays.[3] Calculations of the loss of carbon dioxide from the atmosphere of Mars, resulting from scavenging of ions by the solar wind, indicate that the dissipation of the magnetic field of Mars caused a near-total loss of its atmosphere.[4]
The study of past magnetic field of the Earth is known as paleomagnetism).[5] The polarity of the Earth's magnetic field is recorded in igneous rocks, and reversals of the field are thus detectable as "stripes" centered on mid-ocean ridges where the sea floor is spreading, while the stability of the geomagnetic poles between reversals has allowed paleomagnetists to track the past motion of continents. Reversals also provide the basis for magnetostratigraphy, a way of dating rocks and sediments.[6] The field also magnetizes the crust, and magnetic anomalies can be used to search for deposits of metal ores.[7]
Humans have used compasses for direction finding since the 11th century A.D. and for navigation since the 12th century.[8] Although the North Magnetic Pole does shift with time, this wandering is slow enough that a simple compass remains useful for navigation.

Main characteristics

Description

Common coordinate systems used for representing the Earth's magnetic field.
At any location, the Earth's magnetic field can be represented by a three-dimensional vector (see figure). A typical procedure for measuring its direction is to use a compass to determine the direction of magnetic North. Its angle relative to true North is the declination (D) or variation. Facing magnetic North, the angle the field makes with the horizontal is the inclination (I) or dip. The intensity (F) of the field is proportional to the force it exerts on a magnet. Another common representation is in X (North), Y (East) and Z (Down) coordinates.[9]

Intensity

The intensity of the field is greatest near the poles and weaker near the Equator. It is often measured in gauss (G), but is generally reported in nanotesla (nT), with 1 G = 100,000 nT. A nanotesla is also referred to as a gamma (γ).[10][11][12] The field ranges between approximately 25,000 and 65,000 nT (0.25–0.65 G). By comparison, a strong refrigerator magnet has a field of about 100 G.[13]
A map of intensity contours is called an isodynamic chart. A minimum intensity occurs over South America while there are maxima over northern Canada, Siberia, and the coast of Antarctica south of Australia.

Inclination

The inclination is given by an angle that can assume values between -90° (up) to 90° (down). In the northern hemisphere, the field points downwards. It is straight down at the North Magnetic Pole and rotates upwards as the latitude decreases until it is horizontal () at the magnetic equator. It continues to rotate upwards until it is straight up at the South Magnetic Pole. Inclination can be measured with a dip circle.
An isoclinic chart (map of inclination contours) for the Earth's magnetic field is shown on the right.

Declination

Declination is positive for an eastward deviation of the field relative to true north. It can be estimated by comparing the magnetic north/south heading on a compass with the direction of a celestial pole. Maps typically include information on the declination as an angle or a small diagram showing the relationship between magnetic north and true north. Information on declination for a region can be represented by a chart with isogonic lines (contour lines with each line representing a fixed declination).

Geographical variation

Components of the Earth's magnetic field at the surface from the World Magnetic Model for 2010.
Intensity
Inclination
Declination

Dipolar approximation

The variation between magnetic north (Nm) and "true" north (Ng).
Near the surface of the Earth, its magnetic field can be closely approximated by the field of a magnetic dipole positioned at the center of the Earth and tilted at an angle of about 10° with respect to the rotational axis of the Earth.[11] The dipole is roughly equivalent to a powerful bar magnet, with its south pole pointing towards the geomagnetic North Pole.[14] This may seem surprising, but the north pole of a magnet is so defined because, if allowed to rotate freely, it points roughly northward (in the geographic sense). Since the north pole of a magnet attracts the south poles of other magnets and repels the north poles, it must be attracted to the south pole of Earth's magnet. The dipolar field accounts for 80–90% of the field in most locations.[9]

Magnetic poles

The movement of Earth's North Magnetic Pole across the Canadian arctic, 1831–2001.
The positions of the magnetic poles can be defined in at least two ways.[15]
A magnetic dip pole is a point on the Earth's surface where the magnetic field is entirely vertical.[16]
The inclination of the Earth's field is 90° at the North Magnetic Pole and -90° at the South Magnetic Pole. The two poles wander independently of each other and are not directly opposite each other on the globe. They can migrate rapidly: movements of up to 40 km per year have been observed for the North Magnetic Pole. Over the last 180 years, the North Magnetic Pole has been migrating northwestward, from Cape Adelaide in the Boothia peninsula in 1831 to 600 km from Resolute Bay in 2001.[17] The magnetic equator is the line where the inclination is zero (the magnetic field is horizontal).
If a line is drawn parallel to the moment of the best-fitting magnetic dipole, the two positions where it intersects the Earth's surface are called the North and South geomagnetic poles. If the Earth's magnetic field were perfectly dipolar, the geomagnetic poles and magnetic dip poles would coincide and compasses would point towards them. However, the Earth's field has a significant contribution from non-dipolar terms, so the poles do not coincide and compasses do not generally point at either.

Magnetosphere

Simulation of the interaction between Earth's magnetic field and the interplanetary magnetic field. The magnetosphere is compressed on the day (Sun) side due to the force of the arriving particles, and extended on the night side.
Some of the charged particles from the solar wind are trapped in the Van Allen radiation belt. A smaller number of particles from the solar wind manage to travel, as though on an electromagnetic energy transmission line, to the Earth's upper atmosphere and ionosphere in the auroral zones. The only time the solar wind is observable on the Earth is when it is strong enough to produce phenomena such as the aurora and geomagnetic storms. Bright auroras strongly heat the ionosphere, causing its plasma to expand into the magnetosphere, increasing the size of the plasma geosphere, and causing escape of atmospheric matter into the solar wind. Geomagnetic storms result when the pressure of plasmas contained inside the magnetosphere is sufficiently large to inflate and thereby distort the geomagnetic field.
The solar wind is responsible for the overall shape of Earth's magnetosphere, and fluctuations in its speed, density, direction, and entrained magnetic field strongly affect Earth's local space environment. For example, the levels of ionizing radiation and radio interference can vary by factors of hundreds to thousands; and the shape and location of the magnetopause and bow shock wave upstream of it can change by several Earth radii, exposing geosynchronous satellites to the direct solar wind. These phenomena are collectively called space weather. The mechanism of atmospheric stripping is caused by gas being caught in bubbles of magnetic field, which are ripped off by solar winds.[18] Variations in the magnetic field strength have been correlated to rainfall variation within the tropics.[19]

Time dependence

Short-term variations

Background: a set of traces from magnetic observatories showing a magnetic storm in 2000.
Globe: map showing locations of observatories and contour lines giving horizontal magnetic intensity in μT.
The geomagnetic field changes on time scales from milliseconds to millions of years. Shorter time scales mostly arise from currents in the ionosphere (ionospheric dynamo region) and magnetosphere, and some changes can be traced to geomagnetic storms or daily variations in currents. Changes over time scales of a year or more mostly reflect changes in the Earth's interior, particularly the iron-rich core.[9]
Frequently, the Earth's magnetosphere is hit by solar flares causing geomagnetic storms, provoking displays of aurorae. The short-term instability of the magnetic field is measured with the K-index.
Data from THEMIS show that the magnetic field, which interacts with the solar wind, is reduced when the magnetic orientation is aligned between Sun and Earth - opposite to the previous hypothesis. During forthcoming solar storms, this could result in blackouts and disruptions in artificial satellites.[20]

Secular variation

Estimated declination contours by year, 1590 to 1990 (click to see variation).
Changes in Earth's magnetic field on a time scale of a year or more are referred to as secular variation. Over hundreds of years, magnetic declination is observed to vary over tens of degrees.[9] A movie on the right shows how global declinations have changed over the last few centuries.[21]
The direction and intensity of the dipole change over time. Over the last two centuries the dipole strength has been decreasing at a rate of about 6.3% per century.[9] At this rate of decrease, the field would reach zero in about 1600 years.[22] However, this strength is about average for the last 7 thousand years, and the current rate of change is not unusual.[23]
A prominent feature in the non-dipolar part of the secular variation is a westward drift at a rate of about 0.2 degrees per year.[22] This drift is not the same everywhere and has varied over time. The globally averaged drift has been westward since about 1400 AD but eastward between about 1000 AD and 1400 AD.[24]
Changes that predate magnetic observatories are recorded in archaeological and geological materials. Such changes are referred to as paleomagnetic secular variation or paleosecular variation (PSV). The records typically include long periods of small change with occasional large changes reflecting geomagnetic excursions and geomagnetic reversals.[25]

Magnetic field reversals

Geomagnetic polarity during the late Cenozoic Era. Dark areas denote periods where the polarity matches today's polarity, light areas denote periods where that polarity is reversed.
Although the Earth's field is generally well approximated by a magnetic dipole with its axis near the rotational axis, there are occasional dramatic events where the North and South geomagnetic poles trade places. These events are called geomagnetic reversals. Evidence for these events can be found worldwide in basalts, sediment cores taken from the ocean floors, and seafloor magnetic anomalies. Reversals occur at apparently random intervals ranging from less than 0.1 million years to as much as 50 million years. The most recent such event, called the Brunhes–Matuyama reversal, occurred about 780,000 years ago.[26][27]
However, a study published in 2012 by a group from the German Research Center for Geosciences suggests that a brief complete reversal occurred only 41,000 years ago during the last ice age.[28]
The past magnetic field is recorded mostly by iron oxides, such as magnetite, that have some form of ferrimagnetism or other magnetic ordering that allows the Earth's field to magnetize them. This remanent magnetization, or remanence, can be acquired in more than one way. In lava flows, the direction of the field is "frozen" in small magnetic particles as they cool, giving rise to a thermoremanent magnetization. In sediments, the orientation of magnetic particles acquires a slight bias towards the magnetic field as they are deposited on an ocean floor or lake bottom. This is called detrital remanent magnetization.[5]
Thermoremanent magnetization is the form of remanence that gives rise to the magnetic anomalies around ocean ridges. As the seafloor spreads, magma wells up from the mantle and cools to form new basaltic crust. During the cooling, the basalt records the direction of the Earth's field. This new basalt forms on both sides of the ridge and moves away from it. When the Earth's field reverses, new basalt records the reversed direction. The result is a series of stripes that are symmetric about the ridge. A ship towing a magnetometer on the surface of the ocean can detect these stripes and infer the age of the ocean floor below. This provides information on the rate at which seafloor has spread in the past.[5]
Radiometric dating of lava flows has been used to establish a geomagnetic polarity time scale, part of which is shown in the image. This forms the basis of magnetostratigraphy, a geophysical correlation technique that can be used to date both sedimentary and volcanic sequences as well as the seafloor magnetic anomalies.[5]
Studies of lava flows on Steens Mountain, Oregon, indicate that the magnetic field could have shifted at a rate of up to 6 degrees per day at some time in Earth's history, which significantly challenges the popular understanding of how the Earth's magnetic field works.[29]
Temporary dipole tilt variations that take the dipole axis across the equator and then back to the original polarity are known as excursions.

Earliest appearance

A paleomagnetic study of Australian red dacite and pillow basalt has estimated the magnetic field to have been present since at least 3,450 million years ago.[30][31][32]

Future

Variations in virtual axial dipole moment since the last reversal.
At present, the overall geomagnetic field is becoming weaker; the present strong deterioration corresponds to a 10–15% decline over the last 150 years and has accelerated in the past several years; geomagnetic intensity has declined almost continuously from a maximum 35% above the modern value achieved approximately 2,000 years ago. The rate of decrease and the current strength are within the normal range of variation, as shown by the record of past magnetic fields recorded in rocks (figure on right).
The nature of Earth's magnetic field is one of heteroscedastic fluctuation. An instantaneous measurement of it, or several measurements of it across the span of decades or centuries, are not sufficient to extrapolate an overall trend in the field strength. It has gone up and down in the past for no apparent reason. Also, noting the local intensity of the dipole field (or its fluctuation) is insufficient to characterize Earth's magnetic field as a whole, as it is not strictly a dipole field. The dipole component of Earth's field can diminish even while the total magnetic field remains the same or increases.
The Earth's magnetic north pole is drifting from northern Canada towards Siberia with a presently accelerating rate—10 km per year at the beginning of the 20th century, up to 40 km per year in 2003,[33] and since then has only accelerated.[34]

Physical origin

Earth's core and the geodynamo

A schematic illustrating the relationship between motion of conducting fluid, organized into rolls by the Coriolis force, and the magnetic field the motion generates.
The Earth's magnetic field is mostly caused by electric currents in the liquid outer core, which is composed of highly conductive molten iron. A magnetic field is generated by a feedback loop: current loops generate magnetic fields (Ampère's circuital law); a changing magnetic field generates an electric field (Faraday's law); and the electric and magnetic fields exert a force on the charges that are flowing in currents (the Lorentz force). These effects can be combined in a partial differential equation for the magnetic field called the magnetic induction equation:
\frac{\partial \mathbf{B}}{\partial t} = \eta \nabla^2 \mathbf{B} + \nabla \times (\mathbf{u} \times \mathbf{B})
where u is the velocity of the fluid, B is the magnetic B-field; and η=1/σμ is the magnetic diffusivity with σ electrical conductivity and μ permeability.[35] The term B/∂t is the time derivative of the field; 2 is the Laplace operator and ∇× is the curl operator.
The first term on the right hand side of the induction equation is a diffusion term. In a stationary fluid, the magnetic field declines and any concentrations of field spread out. If the Earth's dynamo shut off, the dipole part would disappear in a few tens of thousands of years.[35]
In a perfect conductor (σ=∞), there would be no diffusion. By Lenz's law, any change in the magnetic field would be immediately opposed by currents, so the flux through a given volume of fluid could not change. As the fluid moved, the magnetic field would go with it. The theorem describing this effect is called the frozen-in-field theorem. Even in a fluid with a finite conductivity, new field is generated by stretching field lines as the fluid moves in ways that deform it. This process could go on generating new field indefinitely, were it not that as the magnetic field increases in strength, it resists fluid motion.[35]
The motion of the fluid is sustained by convection, motion driven by buoyancy. The temperature increases towards the center of the Earth, and the higher temperature of the fluid lower down makes it buoyant. This buoyancy is enhanced by chemical separation: As the core cools, some of the molten iron solidifies and is plated to the inner core. In the process, lighter elements are left behind in the fluid, making it lighter. This is called compositional convection. A Coriolis effect, caused by the overall planetary rotation, tends to organize the flow into rolls aligned along the north-south polar axis.[35][36]
The mere convective motion of an electrically conductive fluid is not enough to ensure the generation of a magnetic field. The above model assumes the motion of charges (such as electrons with respect to atomic nuclei), which is a requirement for generating a magnetic field. However, it is not clear how this motion of charges arises in the circulating fluid of the outer core. Possible mechanisms may include electrochemical reactions which create the equivalent of a battery generating electrical current in the fluid or, a thermoelectric effect[37] (both mechanisms somehow discredited). More robustly, remnant magnetic fields in magnetic materials in the mantle, which are cooler than their Curie temperature, would provide seed “stator” magnetic fields that would induce the required growing currents in the convectively driven fluid behaving as a dynamo, as analyzed by Dr. Philip William Livermore.[38]
The average magnetic field in the Earth's outer core was calculated to be 25 G, 50 times stronger than the field at the surface.[39]

Numerical models

The equations for the geodynamo are enormously difficult to solve, and the realism of the solutions is limited mainly by computer power. For decades, theorists were confined to creating kinematic dynamos in which the fluid motion is chosen in advance and the effect on the magnetic field calculated. Kinematic dynamo theory was mainly a matter of trying different flow geometries and seeing whether they could sustain a dynamo.[40]
The first self-consistent dynamo models, ones that determine both the fluid motions and the magnetic field, were developed by two groups in 1995, one in Japan[41] and one in the United States.[1][42] The latter received a lot of attention because it successfully reproduced some of the characteristics of the Earth's field, including geomagnetic reversals.[40]

Currents in the ionosphere and magnetosphere

Electric currents induced in the ionosphere generate magnetic fields (ionospheric dynamo region). Such a field is always generated near where the atmosphere is closest to the Sun, causing daily alterations that can deflect surface magnetic fields by as much as one degree. Typical daily variations of field strength are about 25 nanoteslas (nT) (i.e. ~ 1:2,000), with variations over a few seconds of typically around 1 nT (i.e. ~ 1:50,000).[43]

Crustal magnetic anomalies

A model of short-wavelength features of Earth's magnetic field, attributed to lithospheric anomalies.[44]
Magnetometers detect minute deviations in the Earth's magnetic field caused by iron artifacts, kilns, some types of stone structures, and even ditches and middens in archaeological geophysics. Using magnetic instruments adapted from airborne magnetic anomaly detectors developed during World War II to detect submarines, the magnetic variations across the ocean floor have been mapped. Basalt — the iron-rich, volcanic rock making up the ocean floor — contains a strongly magnetic mineral (magnetite) and can locally distort compass readings. The distortion was recognized by Icelandic mariners as early as the late 18th century. More important, because the presence of magnetite gives the basalt measurable magnetic properties, these magnetic variations have provided another means to study the deep ocean floor. When newly formed rock cools, such magnetic materials record the Earth's magnetic field.

Measurement and analysis

Detection

The Earth's magnetic field strength was measured by Carl Friedrich Gauss in 1835 and has been repeatedly measured since then, showing a relative decay of about 10% over the last 150 years.[45] The Magsat satellite and later satellites have used 3-axis vector magnetometers to probe the 3-D structure of the Earth's magnetic field. The later Ørsted satellite allowed a comparison indicating a dynamic geodynamo in action that appears to be giving rise to an alternate pole under the Atlantic Ocean west of S. Africa.[46]
Governments sometimes operate units that specialize in measurement of the Earth's magnetic field. These are geomagnetic observatories, typically part of a national Geological Survey, for example the British Geological Survey's Eskdalemuir Observatory. Such observatories can measure and forecast magnetic conditions that sometimes affect communications, electric power, and other human activities. (See magnetic storm.)
The International Real-time Magnetic Observatory Network, with over 100 interlinked geomagnetic observatories around the world has been recording the earths magnetic field since 1991.
The military determines local geomagnetic field characteristics, in order to detect anomalies in the natural background that might be caused by a significant metallic object such as a submerged submarine. Typically, these magnetic anomaly detectors are flown in aircraft like the UK's Nimrod or towed as an instrument or an array of instruments from surface ships.
Commercially, geophysical prospecting companies also use magnetic detectors to identify naturally occurring anomalies from ore bodies, such as the Kursk Magnetic Anomaly.

Statistical models

Each measurement of the magnetic field is at a particular place and time. If an accurate estimate of the field at some other place and time is needed, the measurements must be converted to a model and the model used to make predictions.

Spherical harmonics

Schematic representation of spherical harmonics on a sphere and their nodal lines. Pm is equal to 0 along m great circles passing through the poles, and along ℓ-m circles of equal latitude. The function changes sign each ℓtime it crosses one of these lines.
Example of a quadrupole field. This could also be constructed by moving two dipoles together. If this arrangement were placed at the center of the Earth, then a magnetic survey at the surface would find two magnetic north poles (at the geographic poles) and two south poles at the equator.
The most common way of analyzing the global variations in the Earth's magnetic field is to fit the measurements to a set of spherical harmonics. This was first done by Carl Friedrich Gauss. Spherical harmonics are functions that oscillate over the surface of a sphere. They are the product of two functions, one that depends on latitude and one on longitude. The function of longitude is zero along zero or more great circles passing through the North and South Poles; the number of such nodal lines is the absolute value of the order m. The function of latitude is zero along zero or more latitude circles; this plus the order is equal to the degree ℓ. Each harmonic is equivalent to a particular arrangement of magnetic charges at the center of the Earth. A monopole is an isolated magnetic charge, which has never been observed. A dipole is equivalent to two opposing charges brought close together and a quadrupole to two dipoles brought together. A quadrupole field is shown in the lower figure on the right.[9]
Spherical harmonics can represent any scalar field (function of position) that satisfies certain properties. A magnetic field is a vector field, but if it is expressed in Cartesian components X, Y, Z, each component is the derivative of the same scalar function called the magnetic potential. Analyses of the Earth's magnetic field use a modified version of the usual spherical harmonics that differ by a multiplicative factor. A least-squares fit to the magnetic field measurements gives the Earth's field as the sum of spherical harmonics, each multiplied by the best-fitting Gauss coefficient gm or hm.[9]
The lowest-degree Gauss coefficient, g00, gives the contribution of an isolated magnetic charge, so it is zero. The next three coefficients – g10, g11, and h11 – determine the direction and magnitude of the dipole contribution. The best fitting dipole is tilted at an angle of about 10° with respect to the rotational axis, as described earlier.[9]
Radial dependence
Spherical harmonic analysis can be used to distinguish internal from external sources if measurements are available at more than one height (for example, ground observatories and satellites). In that case, each term with coefficient gm or hm can be split into two terms: one that decreases with radius as 1/rℓ+1 and one that increases with radius as r. The increasing terms fit the external sources (currents in the ionosphere and magnetosphere). However, averaged over a few years the external contributions average to zero.[9]
The remaining terms predict that the potential of a dipole source (ℓ=1) drops off as 1/r2. The magnetic field, being a derivative of the potential, drops off as 1/r3. Quadrupole terms drop off as 1/r4, and higher order terms drop off increasingly rapidly with the radius. The radius of the outer core is about half of the radius of the Earth. If the field at the core-mantle boundary is fit to spherical harmonics, the dipole part is smaller by a factor of about at the surface, the quadrupole part 1⁄16, and so on. Thus, only the components with large wavelengths can be noticeable at the surface. From a variety of arguments, it is usually assumed that only terms up to degree 14 or less have their origin in the core. These have wavelengths of about 2000 km or less. Smaller features are attributed to crustal anomalies.[9]

Global models

The International Association of Geomagnetism and Aeronomy maintains a standard global field model called the International Geomagnetic Reference Field. It is updated every 5 years. The 11th-generation model, IGRF11, was developed using data from satellites (Ørsted, CHAMP and SAC-C) and a world network of geomagnetic observatories.[47] The spherical harmonic expansion was truncated at degree 10, with 120 coefficients, until 2000. Subsequent models are truncated at degree 13 (195 coefficients).[48]
Another global field model is produced jointly by the National Geophysical Data Center and the British Geological Survey. This model truncates at degree 12 (168 coefficients). It is the model used by the United States Department of Defense, the Ministry of Defence (United Kingdom), the North Atlantic Treaty Organization, and the International Hydrographic Office as well as in many civilian navigation systems.[49]
A third model, produced by the Goddard Space Flight Center (NASA and GSFC) and the Danish Space Research Institute, uses a "comprehensive modeling" approach that attempts to reconcile data with greatly varying temporal and spatial resolution from ground and satellite sources.[50]

Biomagnetism

Animals including birds and turtles can detect the Earth's magnetic field, and use the field to navigate during migration.[51] Cows and wild deer tend to align their bodies north-south while relaxing, but not when the animals are under high voltage power lines, leading researchers to believe magnetism is responsible.[52][53]

See also

Magnetic survey ships:

References and Bibliography

  1. ^ a b Glatzmaier, Gary A.; Roberts, Paul H. (1995). "A three-dimensional self-consistent computer simulation of a geomagnetic field reversal". Nature 377 (6546): 203–209. Bibcode:1995Natur.377..203G. doi:10.1038/377203a0.
  2. ^ Glatzmaier, Gary. "The Geodynamo". University of California Santa Cruz. Retrieved October 2011.
  3. ^ Quirin Shlermeler (3 March 2005). "Solar wind hammers the ozone layer". nature news. doi:10.1038/news050228-12.
  4. ^ Luhmann, Johnson & Zhang 1992
  5. ^ a b c d McElhinny, Michael W.; McFadden, Phillip L. (2000). Paleomagnetism: Continents and Oceans. Academic Press. ISBN 0-12-483355-1.
  6. ^ Opdyke, Neil D.; Channell, James E. T. (1996). Magnetic Stratigraphy. Academic Press. ISBN 978-0-12-527470-8.
  7. ^ Mussett, Alan E.; Khan, M. Aftab (2000). Looking into the Earth: An introduction to Geological Geophysics. Cambridge University Press. ISBN 0-521-78085-3.
  8. ^ Temple, Robert (2006). The Genius of China. Andre Deutsch. ISBN 0-671-62028-2.
  9. ^ a b c d e f g h i j Merrill, McElhinny & McFadden 1996, Chapter 2
  10. ^ These are the units of the so-called magnetic B-field. The magnetic H-field has different units, but outside of the Earth's core they are proportional to each other.
  11. ^ a b National Geophysical Data Center. "Geomagnetism Frequently Asked Questions". Geomagnetism. NOAA. Retrieved October 2011.
  12. ^ Campbell 2003, p. 7
  13. ^ Palm, Eric (2011). "Tesla". National High Magnetic Field Laboratory. Retrieved October 2011.
  14. ^ Casselman, Anne (February 28, 2008). "The Earth Has More Than One North Pole". Scientific American. Retrieved May 21, 2013.
  15. ^ Campbell, Wallace A. (1996). ""Magnetic" pole locations on global charts are incorrect". Eos, Transactions, American Geophysical Union 77 (36): 345. Bibcode:1996EOSTr..77..345C. doi:10.1029/96EO00237.
  16. ^ "The Magnetic North Pole". Ocean bottom magnetology laboratory. Woods Hole Oceanographic Institution. Retrieved June 2012.
  17. ^ "Earth's Inconstant Magnetic Field". NASA Science—Science News. 29 December 2003. Retrieved September 2011.
  18. ^ "Solar wind ripping chunks off Mars". Cosmos Online. 25 November 2008. Retrieved September 2011.
  19. ^ "Link found between tropical rainfall and Earth's magnetic field". Planet Earth Online (National Environment Research Council). 20 January 2009. Retrieved 19 April 2012.
  20. ^ Steigerwald, Bill (16 December 2008). "Sun Often "Tears Out A Wall" In Earth's Solar Storm Shield". THEMIS: Understanding space weather. NASA. Retrieved 20 August 2011.
  21. ^ Jackson, Andrew; Jonkers, Art R. T.; Walker, Matthew R. (2000). "Four centuries of Geomagnetic Secular Variation from Historical Records". Philosophical Transactions of the Royal Society A 358 (1768): 957–990. Bibcode:2000RSPTA.358..957J. doi:10.1098/rsta.2000.0569. JSTOR 2666741.
  22. ^ a b "Secular variation". Geomagnetism. Canadian Geological Survey. 2011. Retrieved July 18, 2011.
  23. ^ Constable, Catherine (2007). "Dipole Moment Variation". In Gubbins, David; Herrero-Bervera, Emilio. Encyclopedia of Geomagnetism and Paleomagnetism. Springer-Verlag. pp. 159–161. doi:10.1007/978-1-4020-4423-6_67. ISBN 978-1-4020-3992-8
  24. ^ Dumberry, Mathieu; Finlay, Christopher C. (2007). "Eastward and westward drift of the Earth's magnetic field for the last three millennia". Earth and Planetary Science Letters 254: 146–157. Bibcode:2007E&PSL.254..146D. doi:10.1016/j.epsl.2006.11.026.
  25. ^ Tauxe 1998, Ch. 1
  26. ^ Merrill, McElhinny & McFadden 1996, Chapter 5
  27. ^ Phillips, Tony (December 29, 2003). "Earth's Inconstant Magnetic Field". Science@Nasa. Retrieved December 27, 2009.
  28. ^ "Ice Age Polarity Reversal Was Global Event: Extremely Brief Reversal of Geomagnetic Field, Climate Variability, and Super Volcano". Sciencedaily.com. 2012-10-16. doi:10.1016/j.epsl.2012.06.050. Retrieved 2013-03-21.
  29. ^ Coe, R. S.; Prévot, M.; Camps, P. (20 April 1995). "New evidence for extraordinarily rapid change of the geomagnetic field during a reversal". Nature 374 (6524): 687. Bibcode:1995Natur.374..687C. doi:10.1038/374687a0.
  30. ^ McElhinney, T. N. W.; Senanayake, W. E. (1980). "Paleomagnetic Evidence for the Existence of the Geomagnetic Field 3.5 Ga Ago". Journal of Geophysical Research 85: 3523. Bibcode:1980JGR....85.3523M. doi:10.1029/JB085iB07p03523.
  31. ^ Usui, Yoichi; Tarduno, John A., Watkeys, Michael, Hofmann, Axel, Cottrell, Rory D. (2009). "Evidence for a 3.45-billion-year-old magnetic remanence: Hints of an ancient geodynamo from conglomerates of South Africa". Geochemistry Geophysics Geosystems 10 (9). Bibcode:2009GGG....1009Z07U. doi:10.1029/2009GC002496.
  32. ^ Tarduno, J. A.; Cottrell, R. D., Watkeys, M. K., Hofmann, A., Doubrovine, P. V., Mamajek, E. E., Liu, D., Sibeck, D. G., Neukirch, L. P., Usui, Y. (4 March 2010). "Geodynamo, Solar Wind, and Magnetopause 3.4 to 3.45 Billion Years Ago". Science 327 (5970): 1238–1240. Bibcode:2010Sci...327.1238T. doi:10.1126/science.1183445. PMID 20203044.
  33. ^ "Earth's Inconstant Magnetic Field". Retrieved 2011-01-07.
  34. ^ Lovett, Richard A. (December 24, 2009). "North Magnetic Pole Moving Due to Core Flux".
  35. ^ a b c d Merrill, McElhinny & McFadden 1996, Chapter 8
  36. ^ Buffett, B. A. (2000). "Earth's Core and the Geodynamo". Science 288 (5473): 2007–2012. Bibcode:2000Sci...288.2007B. doi:10.1126/science.288.5473.2007.
  37. ^ "Simulating the geodynamo". Retrieved December 2012.
  38. ^ "Magnetic Stability Analysis for the Geodynamo". Retrieved December 2012.
  39. ^ Buffett, Bruce A. (2010). "Tidal dissipation and the strength of the Earth's internal magnetic field". Nature 468 (7326): 952–954. Bibcode:2010Natur.468..952B. doi:10.1038/nature09643. PMID 21164483. Lay summaryScience 20.
  40. ^ a b Kono, Masaru; Paul H. Roberts (2002). "Recent geodynamo simulations and observations of the geomagnetic field". Reviews of Geophysics 40 (4): 1–53. Bibcode:2002RvGeo..40.1013K. doi:10.1029/2000RG000102.
  41. ^ Kageyama, Akira; Sato, Tetsuya, the Complexity Simulation Group, (1 January 1995). "Computer simulation of a magnetohydrodynamic dynamo. II". Physics of Plasmas 2 (5): 1421–1431. Bibcode:1995PhPl....2.1421K. doi:10.1063/1.871485.
  42. ^ Glatzmaier, G; Paul H. Roberts (1995). "A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle". Physics of the Earth and Planetary Interiors 91 (1–3): 63–75. doi:10.1016/0031-9201(95)03049-3.
  43. ^ Stepišnik, Janez (2006). "Spectroscopy: NMR down to Earth". Nature 439 (7078): 799–801. Bibcode:2006Natur.439..799S. doi:10.1038/439799a.
  44. ^ Frey, Herbert. "Satellite Magnetic Models". Comprehensive Modeling of the Geomagnetic Field. NASA. Retrieved 13 October 2011.
  45. ^ Courtillot, Vincent; Le Mouël, Jean Louis (1988). "Time Variations of the Earth's Magnetic Field: From Daily to Secular". Annual Review of Earth and Planetary Science 1988 (16): 435. Bibcode:1988AREPS..16..389C. doi:10.1146/annurev.ea.16.050188.002133.
  46. ^ Hulot, G.; Eymin, C.; Langlais, B.; Mandea, M.; Olsen, N. (April 2002). "Small-scale structure of the geodynamo inferred from Oersted and Magsat satellite data". Nature 416 (6881): 620–623. doi:10.1038/416620a. PMID 11948347.
  47. ^ Finlay (31 December 2010). "Evaluation of candidate geomagnetic field models for IGRF-11". Earth, Planets and Space 62 (10): 787–804. Bibcode:2010EP&S...62..787F. doi:10.5047/eps.2010.11.005.
  48. ^ "The International Geomagnetic Reference Field: A "Health" Warning". IAGA Division V-MOD Geomagnetic Field Modeling. NOAA. January 2010. Retrieved 13 October 2011.
  49. ^ "The World Magnetic Model". Geomagnetism. NOAA. Retrieved 14 October 2011.
  50. ^ Herbert, Frey. "Comprehensive Modeling of the Geomagnetic Field". NASA.
  51. ^ Deutschlander, M.; Phillips, J.; Borland, S. (1999). "The case for light-dependent magnetic orientation in animals". Journal of Experimental Biology 202 (8): 891–908. PMID 10085262.
  52. ^ Burda, H.; Begall, S.; Cerveny, J.; Neef, J.; Nemec, P. (Mar 2009). "Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants". Proceedings of the National Academy of Sciences of the United States of America 106 (14): 5708–5713. Bibcode:2009PNAS..106.5708B. doi:10.1073/pnas.0811194106. PMC 2667019. PMID 19299504.
  53. ^ Dyson, P. J. (2009). "Biology: Electric cows". Nature 458 (7237): 389. Bibcode:2009Natur.458Q.389.. doi:10.1038/458389a. PMID 19325587.

Further reading

External links


end quote from:
 Wikipedia Earth's Magnetic Field

No comments: