- Is a Mini-Ice age on the way starting in 2030? That's hard to say because of Global warming here on earth. Could the two cancel each other out and just confuse the hell out of everyone? Yes. This is a possibility too! So, the danger for mankind here I would say is not having enough knowledge to make sense of all of these many many factors and not just human caused Global Warming.
-
- Solar astronomy – the study of our Sun
www.bbc.com/news/science-environment-25743806
Jan 18, 2014 - "If you want to go back to see when the Sun was this inactive... ... latter half of the 17th Century, the Sun went through an extremely quiet phase ...
www.forbes.com/.../sun-has-likely-entered-new-evolutionary-phase-say-astronomers/
Jun 27, 2016 - The Sun has likely already entered into a new unpredicted long-term ... found that the Sun is currently in a special phase of its magnetic evolution. ... it will remain magnetically inactive for the rest of its hydrogen-burning life.
www.independent.co.uk › News › Science
Jun 23, 2015 - ... of the Sun entering the same kind of cooling phase that allowed “frost ... next half century the world will experience a “grand solar minimum”, ...
news.nationalgeographic.com/.../110614-sun-hibernation-solar-cycle-sunspots-space-...
Jun 14, 2011 - For centuries scientists have been using sunspots—some of which can be wider than Earth—to track the sun's magnetic highs and lows.
begin quote from:
www.dailymail.co.uk/.../Is-mini-ICE-AGE-way-Scientists-warn-sun-sleep-2020-cause...
Jul 10, 2015 - During Cycle 26, which covers the decade from 2030-2040, the two waves will ... 'When they are out of phase, we have solar minimums.
Is a mini ICE AGE on the way? Scientists warn the sun will 'go to sleep' in 2030 and could cause temperatures to plummet
- New study claims to have cracked predicting solar cycles
- Says that between 2030 and 2040 solar cycles will cancel each other out
- Could lead to 'Maunder minimum' effect that saw River Thames freeze over
Published:
13:40 EDT, 10 July 2015
|
Updated:
16:42 EDT, 10 July 2015
The Earth could be headed for a 'mini ice age' researchers have warned.
A
new study claims to have cracked predicting solar cycles - and says
that between 2020 and 2030 solar cycles will cancel each other out.
This,
they say, will lead to a phenomenon known as the 'Maunder minimum' -
which has previously been known as a mini ice age when it hit between
1646 and 1715, even causing London's River Thames to freeze over.
Scroll down for video
+3
A silent
sun: In 2011 this image was captured showing an almost clear sun - which
experts say could happen for almost a decade from 2030.
THE SOLAR CYCLE
Conventional wisdom holds that solar activity swings back and forth like a simple pendulum.
At one end of the cycle, there is a quiet time with few sunspots and flares.
At the other end, solar max brings high sunspot numbers and frequent solar storms.
It's a regular rhythm that repeats every 11 years.
Reality is more complicated.
Astronomers have been counting sunspots for centuries, and they have seen that the solar cycle is not perfectly regular.
The
new model of the Sun's solar cycle is producing unprecedentedly
accurate predictions of irregularities within the Sun's 11-year
heartbeat.
It draws on dynamo effects in two layers of the Sun, one close to the surface and one deep within its convection zone.
Predictions
from the model suggest that solar activity will fall by 60 per cent
during the 2030s to conditions last seen during the 'mini ice age' that
began in 1645, according to the results presented by Prof Valentina
Zharkova at the National Astronomy Meeting in Llandudno.
The model predicts that the pair of waves become increasingly offset during Cycle 25, which peaks in 2022.
During
Cycle 26, which covers the decade from 2030-2040, the two waves will
become exactly out of synch and this will cause a significant reduction
in solar activity.
'In
cycle 26, the two waves exactly mirror each other – peaking at the same
time but in opposite hemispheres of the Sun,' said Zharkova.
'Their interaction will be disruptive, or they will nearly cancel each other.
'We predict that this will lead to the properties of a 'Maunder minimum''
'Effectively,
when the waves are approximately in phase, they can show strong
interaction, or resonance, and we have strong solar activity.
'When they are out of phase, we have solar minimums.
'When there is full phase separation, we have the conditions last seen during the Maunder minimum, 370 years ago.'
THE MAUNDER MINIMUM
The
Maunder Minimum (also known as the prolonged sunspot minimum) is the
name used for the period starting in about 1645 and continuing to about
1715 when sunspots became exceedingly rare, as noted by solar observers
of the time.
It caused London's River Thames to freeze over, and 'frost fairs' became popular.
This
period of solar inactivity also corresponds to a climatic period called
the 'Little Ice Age' when rivers that are normally ice-free froze and
snow fields remained year-round at lower altitudes.
There is evidence that the Sun has had similar periods of inactivity in the more distant past, Nasa says.
The connection between solar activity and terrestrial climate is an area of on-going research.
Some
scientists hypothesize that the dense wood used in Stradivarius
instruments was caused by slow tree growth during the cooler period.
Instrument maker Antonio Stradivari was born a year before the start of the Maunder Minimum.
Maunder Minimum (also known as
the prolonged sunspot minimum) is the name used for the period starting
in about 1645 and continuing to about 1715 when sunspots became
exceedingly rare, as noted by solar observers of the time
It is 172 years since a scientist first spotted that the Sun's activity varies over a cycle lasting around 10 to 12 years.
But every cycle is a little different and none of the models of causes to date have fully explained fluctuations.
+3
The Frozen Thames, 1677 - an oil painting by Abraham Hondius shows the old London Bridge during the Maunder Minimum
Many solar physicists have put the cause of the solar cycle down to a dynamo caused by convecting fluid deep within the Sun.
Now,
Zharkova and her colleagues have found that adding a second dynamo,
close to the surface, completes the picture with surprising accuracy.
'We found magnetic wave components appearing in pairs, originating in two different layers in the Sun's interior,' she said.
'They
both have a frequency of approximately 11 years, although this
frequency is slightly different, and they are offset in time.
'Over
the cycle, the waves fluctuate between the northern and southern
hemispheres of the Sun. Combining both waves together and comparing to
real data for the current solar cycle, we found that our predictions
showed an accuracy of 97%,' said Zharkova.
+3
Montage of images of solar
activity between August 1991 and September 2001 taken by the Yohkoh Soft
X-ray Telecope, showing variation in solar activity during a sunspot
cycle.
Zharkova
and her colleagues derived their model using a technique called
'principal component analysis' of the magnetic field observations from
the Wilcox Solar Observatory in California.
They examined three solar cycles-worth of magnetic field activity, covering the period from 1976-2008.
In addition, they compared their predictions to average sunspot numbers, another strong marker of solar activity.
All the predictions and observations were closely matched.
No comments:
Post a Comment