The Maunder Minimum is a solar minimum which some scientists say will occur around 2030. This is interesting because the Maunder minimum likely had something to do with the Little Ice Age (Spörer noted that, during one 28-year period within the Maunder Minimum (1672–1699)) So, the 28 year period at least corresponded to part of "The Little Ice Age". It did not begin the "Little Ice Age" but might have been a factor in continuing or prolonging it. And the fact that one is predicted to occur again around 2030 is also interesting.
A friend of mine said to me, "Oh. I have to go see the Northern Lights before 2030 or there won't be any for awhile."
What I wonder is if this will further degrade our magnetosphere because part of what "charges up" our magnetosphere is from the sun and the other part is from the molten core of Earth or Geodynamo earth?
My other thought is that maybe we are depleting our own Magnetosphere by generating electricity by breaking the fields of magnets. For example, Electricity is a form of magnetism. Geodynamo Earth is magnetic (north pole and south pole) which are moving faster and faster now. So, how does all this interrelate to our survival here on earth as human beings as well as all life here?
Maunder Minimum
From Wikipedia, the free encyclopedia
The term was introduced after John A. Eddy[1] published a landmark 1976 paper in Science.[2] Astronomers before Eddy had also named the period after the solar astronomers Annie Russell Maunder (1868–1947) and E. Walter Maunder (1851–1928), who studied how sunspot latitudes changed with time.[3] The period the husband and wife team examined included the second half of the 17th century. Two papers were published in Edward Maunder's name in 1890[4] and 1894,[5] and he cited earlier papers written by Gustav Spörer.[6] Due to the social climate of the time, Annie's contribution was not publicly recognized.[7]
Spörer noted that, during one 28-year period within the Maunder Minimum (1672–1699), observations showed fewer than 50 sunspots, as opposed to a more typical 40,000–50,000 spots in modern times.[8]
Like the Dalton Minimum and Spörer Minimum, the Maunder Minimum coincided with a period of lower-than-average European temperatures.
Contents
Sunspot observations
The Maunder Minimum occurred between 1645 and 1715 when very few sunspots were observed. This was not due to a lack of observations; during the 17th century, Giovanni Domenico Cassini carried out a systematic program of solar observations at the Observatoire de Paris, thanks to the astronomers Jean Picard and Philippe de La Hire. Johannes Hevelius also performed observations on his own. The total numbers of sunspots (but not Wolf numbers) in different years were as follows[citation needed]:Year | Sunspots |
---|---|
1610 | 9 |
1620 | 6 |
1630 | 9 |
1640 | 0 |
1650 | 3 |
1660 | Some sunspots reported by Jan Heweliusz in Machina Coelestis |
1670 | 0 |
1680 | 1 huge sunspot observed by Giovanni Domenico Cassini |
The sunspot activity was then concentrated in the southern hemisphere of the Sun, except for the last cycle when the sunspots appeared in the northern hemisphere, too.
According to Spörer's law, at the start of a cycle, spots appear at ever lower latitudes until they average at about latitude 15° at solar maximum. The average then continues to drift lower to about 7° and after that, while spots of the old cycle fade, new cycle spots start appearing again at high latitudes.
The visibility of these spots is also affected by the velocity of the sun's surface rotation at various latitudes:
Solar latitude | Rotation period (days) |
---|---|
0° | 24.7 |
35° | 26.7 |
40° | 28.0 |
75° | 33.0 |
Little Ice Age
The correlation between low sunspot activity and cold winters in England has recently been analyzed using the longest existing surface temperature record, the Central England Temperature record.[15] They emphasize that this is a regional and seasonal effect relating to European winters, and not a global effect. A potential explanation of this has been offered by observations by NASA's Solar Radiation and Climate Experiment, which suggest that solar UV output is more variable over the course of the solar cycle than scientists had previously thought.[16] In 2011, an article was published in the Nature Geoscience journal that uses a climate model with stratospheric layers and the SORCE data to tie low solar activity to jet stream behavior and mild winters in some places (southern Europe and Canada/Greenland) and colder winters in others (northern Europe and the United States).[17] In Europe, examples of very cold winters are 1683-84, 1694-95, and the winter of 1708–09.[18]
Note that the term "Little Ice Age" applied to the Maunder minimum is something of a misnomer as it implies a period of unremitting cold (and on a global scale), which is not the case. For example, the coldest winter in the Central England Temperature record is 1683-84, but the winter just two years later (both in the middle of the Maunder minimum) was the fifth warmest in the whole 350-year CET record. Furthermore, summers during the Maunder minimum were not significantly different from those seen in subsequent years. The drop in global average temperatures in paleoclimate reconstructions at the start of the Little Ice Age was between about 1560 and 1600, whereas the Maunder minimum began almost 50 years later.[original research?]
Other observations
Other historical sunspot minima have been detected either directly or by the analysis of the cosmogenic isotopes; these include the Spörer Minimum (1450–1540), and less markedly the Dalton Minimum (1790–1820). In a 2012 study, sunspot minima have been detected by analysis of carbon-14 in lake sediments.[22] In total there seem to have been 18 periods of sunspot minima in the last 8,000 years, and studies indicate that the sun currently spends up to a quarter of its time in these minima.
A paper based on an analysis of a Flamsteed drawing, suggests that the Sun's surface rotation slowed in the deep Maunder minimum (1684).[23]
During the Maunder Minimum aurorae had been observed seemingly normally, with a regular decadal-scale cycle.[24][25] This is somewhat surprising because the later, and less deep, Dalton sunspot minimum is clearly seen in auroral occurrence frequency, at least at lower geomagnetic latitudes.[26] Because geomagnetic latitude is an important factor in auroral occurrence, (lower-latitude aurorae requiring higher levels of solar-terrestrial activity) it becomes important to allow for population migration and other factors that may have influenced the number of reliable auroral observers at a given magnetic latitude for the earlier dates.[27] Decadal-scale cycles during the Maunder minimum can also be seen in the abundances of the beryllium-10 cosmogenic isotope (which unlike carbon-14 can be studied with annual resolution) [28] but these appear to be in antiphase with any remnant sunspot activity. An explanation in terms of solar cycles in loss of solar magnetic flux was proposed in 2012.[29]
The fundamental papers on the Maunder minimum (Eddy, Legrand, Gleissberg, Schröder, Landsberg et al.) have been published in Case studies on the Spörer, Maunder and Dalton Minima.[30]
See also
References
- Schröder, Wilfried (2005). Case studies on the Spörer, Maunder, and Dalton minima. Beiträge zur Geschichte der Geophysik und Kosmischen Physik 6. Potsdam: AKGGP, Science Edition.
Further reading
- Luterbach, J.; et al. (2001). "The Late Maunder Minimum (1675-1715) - A Key Period for Studying Decadal Scale Climatic Change in Europe". Climatic Change 49 (4): 441–462. doi:10.1023/A:1010667524422.
- Soon, Willie Wei-Hock; Yaskell, Steven H. (2003). The Maunder Minimum and the Variable Sun-Earth Connection. River Edge, NJ: World Scientific. ISBN 981-238-275-5.
- What's wrong with the sun? (Nothing)
- Solar poles to become quadrupolar in May 2012 (Hinode)
- Barnard, L.; et al. (2011). "Predicting Space Climate Change". Geophys. Res. Lett 38 (16): L16103. Bibcode:2011GeoRL..3816103B. doi:10.1029/2011GL048489.
External links
- HistoricalClimatology.com, further links and resources, updated 2014
- Climate History Network, network of historical climatologists, updated 2014
|
- Spörer (1887) "Über die Periodicität der Sonnenflecken seit dem Jahre 1618, vornehmlich in Bezug auf die heliographische Breite derselben, und Hinweis auf eine erhebliche Störung dieser Periodicität während eines langen Zeitraumes" (On the periodicity of sunspots since the year 1618, especially with respect to the heliographic latitude of the same, and reference to a significant disturbance of this periodicity during a long period), Vierteljahrsschrift der Astronomischen Gesellschaft (Leipzig), 22 : 323-329.
- G. Spoerer (February 1889) "Sur les différences que présentent l'hémisphère nord et l'hémisphère sud du Soleil" (On the differences that the northern hemisphere and southern hemisphere of the sun present), Bulletin Astronomique, 6 : 60-63.
No comments:
Post a Comment