Wednesday, February 3, 2016

220 raccoons with Distemper in Santa Cruz County in last 3 months

If you live in Santa Cruz County in Northern California or nearby counties make sure your pets have their distemper shots so they don't wind up being dead like most of these raccoons will. They said on the news that this will get a lot worse before it gets better too. News Source KSBW.

This is who can get this disease which is very contagious right now.

  domestic and wild species of dogs, coyotes, foxes, pandas, wolves, ferrets, skunks, raccoons, and large cats, as well as pinnipeds, some primates, and a variety of other species.

Here is more about it from Wikipedia:

Canine distemper

From Wikipedia, the free encyclopedia
Canine distemper virus
Scientific classification
Order: Mononegavirales
Family: Paramyxoviridae
Genus: Morbillivirus
Species: Canine distemper virus

Dog infected with canine distemper: Note the purulent nasal discharge and hyperkeratotic nose.
Canine distemper (sometimes termed hardpad disease in canine) is a viral disease that affects a wide variety of animal families, including domestic and wild species of dogs, coyotes, foxes, pandas, wolves, ferrets, skunks, raccoons, and large cats, as well as pinnipeds, some primates, and a variety of other species. It was long believed that animals in the family Felidae, including many species of large cat as well as domestic cats, were resistant to canine distemper, until some researchers reported the prevalence of CDV infection in large felids.[1] It is now known that both large Felidae and domestic cats can be infected, usually through close housing with dogs[1][2] or possibly blood transfusion from infected cats,[1] but such infections appear to be self-limiting and largely without symptoms.[2]
In canines, distemper impacts several body systems, including the gastrointestinal and respiratory tracts and the spinal cord and brain, with common symptoms that include high fever, eye inflammation and eye/nose discharge, labored breathing and coughing, vomiting and diarrhea, loss of appetite and lethargy, and hardening of nose and footpads. The viral infection can be accompanied by secondary bacterial infections and can present eventual serious neurological symptoms.
Canine distemper is caused by a single-stranded RNA virus of the family paramyxovirus (the same family of the distinct virus that causes measles in humans). The disease is highly contagious via inhalation and fatal 50% of the time.[where?][not verified in body] Despite extensive vaccination in many regions, it remains a major disease of dogs, and is the leading cause of infectious disease death in dogs.[not verified in body]

Contents

Etymology

The origin of the word distemper is from the Middle English distemperen, meaning to upset the balance of the humors, which is from the Old French destemprer, meaning to disturb, which is from the Vulgar Latin distemperare: Latin dis- and Latin temperare, meaning to not mix properly.

Agent, host range, symptoms, impact

Distemper is caused by a single-stranded RNA virus of the family paramyxovirus, which is a close relative of the viruses that cause measles in man and rinderpest in animals.[3][4]
Distemper, or hardpad disease in canines,[5] affects animals in the families Canidae (dog, fox, wolf, raccoon dog), Mustelidae (ferret, mink, skunk, wolverine, marten, badger, otter),[5][3] Procyonidae (raccoon, coati), Ailuridae (red panda), Ursidae (bear), Elephantidae (Asian elephant), and some primates (e.g., Japanese monkey),[3] as well as Viverridae (raccoon-like South Asian[citation needed] binturong, palm civet),[3] Hyaenidae (hyena),[citation needed] Pinnipedia (seals, walrus, sea lion, etc.),[6][citation needed] and large Felidae (cats,[3] though not domestic cats.[citation needed])[7]
As McLeod notes, "Canine distemper causes symptoms in multiple body systems, including the gastrointestinal tract, respiratory tract, and the brain and spinal cord", and common symptoms in that species can include high fever, eye and nose discharge and eye inflammation, vomiting and diarrhea, lethargy and loss of appetite, labored breathing and/or coughing, and hardening of footpads and nose, with accompanying bacterial infection and eventual serious neurological symptoms.[8][better source needed] Despite extensive vaccination in many regions, it remains a major disease of dogs.[9][non-primary source needed][better source needed]

History

A relative of the measles virus, canine distemper virus (CDV) had its first recorded case described in 1905 by French veterinarian Henri Carré.[10][non-primary source needed] It was first thought to be related to the plague and typhus and was attributed to several species of bacteria.[11][page needed][better source needed] It now affects all populations of domestic dog and some populations of wildlife. The first vaccine against canine distemper was developed in 1923 and 1924 by an Italian named Puntoni. Although he did not use a large population of dogs for his trials, his work shows that dogs can be vaccinated against this disease, producing solid immunity.[citation needed] A commercial vaccine was developed in 1950, yet owing to limited use, the virus remains prevalent in many populations.[10][non-primary source needed] The domestic dog has largely been responsible for introducing canine distemper to previously unexposed wildlife and now causes a serious conservation threat to many species of carnivores and some species of marsupials. The virus contributed to the near-extinction of the black-footed ferret. It also may have played a considerable role in the extinction of the thylacine (Tasmanian tiger) and recurrently causes mortality among African wild dogs.[4] In 1991, the lion population in Serengeti, Tanzania, experienced a 20% decline as a result of the disease.[12] The disease has also mutated to form phocid distemper virus, which affects seals.[6]

Infection


A. Lung lesion in an African wild dog B. Viral inclusion bodies
The virus, a single-stranded negative RNA, can cause systemic infection in the host carnivore.[13][non-primary source needed] Puppies from three to six months old are particularly susceptible.[14][better source needed] CDV spreads through aerosol droplets and through contact with infected bodily fluids, including nasal and ocular secretions, feces, and urine, six to 22 days after exposure. It can also be spread by food and water contaminated with these fluids.[15][page needed][16][page needed] The time between infection and disease is 14 to 18 days, although a fever can appear from three to six days after infection.[17][page needed]
Canine distemper virus tends to orient its infection towards the lymphoid, epithelial, and nervous tissues. The virus initially replicates in the lymphatic tissue of the respiratory tract. The virus then enters the blood stream and infects the respiratory, gastrointestinal, urogenital epithelial, and central nervous systems, and optic nerves.[3] Therefore, the typical pathologic features of canine distemper include lymphoid depletion (causing immunosuppression and leading to secondary infections), interstitial pneumonia, encephalitis with demyelination, and hyperkeratosis of the nose and foot pads.
The mortality rate of the virus largely depends on the immune status of the infected dogs. Puppies experience the highest mortality rate, where complications such as pneumonia and encephalitis are more common.[16] In older dogs that develop distemper encephalomyelitis, vestibular disease may present.[18] Around 15% of canine inflammatory central nervous system diseases are a result of CDV.[9]

Disease progression

The virus first appears in bronchial lymph nodes and tonsils two days after exposure. The virus then enters the blood stream on the second or third day.[16] A first round of acute fever tends to begin around three to eight days after infection, which is often accompanied by a low white blood cell count, especially of lymphocytes, as well as low platelet count. These signs may or may not be accompanied by anorexia, a runny nose, and discharge from the eye. This first round of fever typically recedes rapidly within 96 hours, and then a second round of fever begins around the 11th or 12th day and lasts at least a week. Gastrointestinal and respiratory problems tend to follow, which may become complicated with secondary bacterial infections. Inflammation of the brain and spinal cord, otherwise known as encephalomyelitis, either is associated with this, subsequently follows, or comes completely independent of these problems. A thickening of the footpads sometimes develops, and vesicularpustular lesions on the abdomen usually develop. Neurological signs typically are found in the animals with thickened footpads from the virus.[3][6] About half of sufferers experience meningoencephalitis.[6] Less than 50% of the adult dogs that contract the disease die from it. Among puppies, the death rate often reaches 80%.[19]

Gastrointestinal and respiratory signs

Commonly observed signs are a runny nose, vomiting and diarrhea, dehydration, excessive salivation, coughing and/or labored breathing, loss of appetite, and weight loss. When and if the neurological signs develop, incontinence may ensue.[6][14][better source needed][20]

Neurological signs

The signs within the central nervous system include a localized involuntary twitching of muscles or groups of muscles, seizures often distinguished by salivation, and jaw movements commonly described as "chewing gum fits", or more appropriately as "distemper myoclonus". As the condition progresses, the seizures worsen and advance to grand mal convulsions followed by death of the animal. The animal may also show signs of sensitivity to light, incoordination, circling, increased sensitivity to sensory stimuli such as pain or touch, and deterioration of motor capabilities. Less commonly, they may lead to blindness and paralysis. The length of the systemic disease may be as short as 10 days, or the start of neurological signs may not come until several weeks or months later. Those few that survive usually have a small tic or twitch of varying levels of severity. With time, this tic will usually diminish somewhat in its severity.[3][6]

Lasting signs

A dog that survives distemper will continue to have both nonlife-threatening and life-threatening signs throughout its lifespan. The most prevalent nonlife-threatening symptom is hard pad disease. This occurs when a dog experiences the thickening of the skin on the pads of its paws as well as on the end of its nose. Another lasting symptom commonly is enamel hypoplasia. Puppies, especially, will have damage to the enamel of teeth that are not completely formed or those that have not yet grown through the gums. This is a result of the virus's killing the cells responsible for manufacturing the tooth enamel. These affected teeth tend to erode quickly.[21]
Life-threatening signs usually include those due to the degeneration of the nervous system. Dogs that have been infected with distemper tend to suffer a progressive deterioration of mental abilities and motor skills. With time, the dog can acquire more severe seizures, paralysis, reduction in sight and incoordination. These dogs are usually humanely euthanized because of the immense pain and suffering they face.[21]

Diagnosis

The above signs, especially fever, respiratory signs, neurological signs, and thickened footpads occurring in unvaccinated dogs strongly indicate canine distemper. However, several febrile diseases match many of the signs of the disease and only recently has distinguishing between canine hepatitis, herpes virus, parainfluenza and leptospirosis been possible.[6] Thus, finding the virus by various methods in the dog's conjunctival cells gives a definitive diagnosis. In older dogs that develop distemper encephalomyelitis, diagnosis may be more difficult, since many of these dogs have an adequate vaccination history.[18]
An additional test to confirm distemper is a brush border slide of the bladder transitional epithelium of the inside lining from the bladder, stained with Dif-Quick. These infected cells have inclusions which stain a carmine red color, found in the paranuclear cytoplasm readability. About 90% of the bladder cells will be positive for inclusions in the early stages of distemper.[22]

Prevention

See also: DA2PPC Vaccine
A number of vaccines against canine distemper exist for dogs (ATCvet code: QI07AD05 and combinations) and domestic ferrets (QI20DD01), which in many jurisdictions are mandatory for pets. Infected animals should be quarantined from other dogs for several months owing to the length of time the animal may shed the virus.[3] The virus is destroyed in the environment by routine cleaning with disinfectants, detergents, or drying. It does not survive in the environment for more than a few hours at room temperature (20–25 °C), but can survive for a few weeks in shady environments at temperatures slightly above freezing.[23] It, along with other labile viruses, can also persist longer in serum and tissue debris.[16]

Treatment

There is no specific treatment for the canine distemper. As with measles, the treatment is symptomatic and supportive.[3]
Vitamin A supplements have been shown to reduce measles associated mortality in humans. Similar findings were made for ferrets infected with CDV.[24][non-primary source needed]
The distemper virus was observed to be susceptible to ribavirin in vitro, and 0.02 to 0.05 micromols are needed to induce its mechanism of error catastrophe and the inhibitory effect on virus replication by 50%.[25][non-primary source needed] The main concern in the use of ribavirin was the result of its interaction with the blood–brain barrier. As the brain is an immunologically privileged area, the concern was the capacity of ribavirin to overcome this barrier. In a study using mice with encephalitis due to measles, once the virus has become established in the nervous phase, the blood–brain barrier prevents ribavirin from acting in the brain.[26][non-primary source needed] The verification of all these results in vivo resulted in an effectiveness of 80%, versus 50% of the control group, in animals that had already reached the nervous phase of viral infection. Survival rates were recorded at the end of the 15 day treatment protocol. No post treatment survival data was recorded.[27][self-published source?][better source needed] The application of ribavirin demands a close monitoring of the animal due the risk of leukopenia; also, the ingestion of long-chain tryglicerides (fats) is needed to better absorb the drug,[28][non-primary source needed] and for preservation of gastric tissues, which are quite susceptible to it.
The medical and veterinary communities widely accept, while possible treatments are still being investigated as to their efficacy, prevention using vaccination as the most reliable way of preventing disease spread among the population.

Relation to Paget's disease

Paramyxoviruses, such as CDV, measles, respiratory syncytial virus, simian virus 5, and parainfluenza virus type 3, have long been suspected as the causative agents of Paget's disease, a focal destructive disease of bone. Most studies, however, have pointed more directly at CDV and measles.[29][non-primary source needed][30][non-primary source needed][31][non-primary source needed] A virus detection technique, in situ RT-PCR, has found CDV in 100% of Paget's disease samples.[32][non-primary source needed]

Prevalence

The prevalence of canine distemper in the community has decreased dramatically due to the availability of vaccinations. However, the disease continues to spread among unvaccinated populations, such as animal shelters and pet stores. This provides a great threat to both the rural and urban communities throughout the United States, affecting both shelter and domestic canines. Despite the effectiveness of the vaccination, outbreaks of this disease continue to occur nationally. In April 2011, the Arizona Humane Society released a valley-wide pet health alert throughout the Phoenix, Arizona area.[33]

Contributing factors

Outbreaks of canine distemper continue to occur throughout the United States and elsewhere, and are caused by many factors. These factors include the overpopulation of dogs and the irresponsibility of pet owners. The overpopulation of dogs is a national problem that organizations such as the Humane Society and ASPCA face every day.[34] This problem is even greater within areas such as Arizona, owing to the vast amount of rural land. An unaccountable number of strays that lack vaccinations reside in these areas and are therefore more susceptible to diseases such as canine distemper. These strays act as a host for the virus, spreading it throughout the surrounding area, including urban areas. Puppies and dogs that have not received their shots can then be infected if in a place where many dogs interact, such as a dog park.
The irresponsibility of pet owners is another factor that contributes to ongoing outbreaks of canine distemper. Puppies should begin vaccination at six to eight weeks of age and then continue getting the “booster shot” every two to four weeks until they are 16 weeks of age. Without the full series of shots, the vaccination will not provide protection against the virus. Since puppies are typically sold at the age of eight to ten weeks, they typically receive the first shot while still with their breeder, but the new owner often does not finish the series. These dogs are not protected against the virus and so are susceptible to canine distemper infection, continuing the downward spiral that leads to outbreaks throughout the country.[35]

Further reading

  • Otto M. Radostits, David A. Ashford, Craig E. Greene, Ian Tizard, et al., 2011, Canine Distemper (Hardpad Disease), in The Merck Manual for Pet Health (online): Pet Owners: Dog Disorders and Diseases: Disorders Affecting Multiple Body Systems of Dogs, see [5], accessed 15 December 2014.
  • Kate E. Creevy, 2013, Overview of Canine Distemper, in The Merck Veterinary Manual (online): Veterinary Professionals: Generalized Conditions: Canine Distemper, see [6], accessed 15 December 2014.

References



  • Ikeda, Yasuhiro; Nakamura, Kazuya; Miyazawa, Takayuki; Chen, Ming-Chu; Kuo, Tzong-Fu; Lin, James A; Mikami, Takeshi; Kai, Chieko; Takahashi, Eiji (May 2001). "Seroprevalence of Canine Distemper Virus in Cats". Clin Vaccine Immunol 8 (3): 641–644. doi:10.1128/CDLI.8.3.641-644.2001. PMID 11329473. Retrieved 30 September 2015.

    1. "Canine Distemper: Prevention of Infections". MarvistaVet. Retrieved 2012-04-09.

    External links



  • Greene, Craig E; Appel, Max J (2006). "3". In Greene, Craig E. Infectious Diseases of the Dog and Cat (PDF) (3rd ed.). St Louis, MO: Elsevier. ISBN 978-1-4160-3600-5. Retrieved 30 September 2015.

  • Kate E. Creevy, 2013, Overview of Canine Distemper, in The Merck Veterinary Manual (online): Veterinary Professionals: Generalized Conditions: Canine Distemper, see [1], accessed 15 December 2014.

  • McCarthy AJ, Shaw MA, Goodman SJ (December 2007). "Pathogen evolution and disease emergence in carnivores". Proc. Biol. Sci. 274 (1629): 3165–74. doi:10.1098/rspb.2007.0884. PMC 2293938. PMID 17956850.

  • Otto M. Radostits, David A. Ashford, Craig E. Greene, Ian Tizard, et al., 2011, Canine Distemper (Hardpad Disease), in The Merck Manual for Pet Health (online): Pet Owners: Dog Disorders and Diseases: Disorders Affecting Multiple Body Systems of Dogs, see [2], accessed 15 December 2014.

  • Jones, T.C.; Hunt, R.D.; King, N.W. (1997). Veterinary Pathology. Blackwell Publishing.[page needed]

  • Feline distemper, also termed panleukopenia, is a different virus that is exclusive to cats.[not verified in body]

  • Lianne McLeod, 2014, "Distemper in Dogs: Signs, Diagnosis and Treatment of Distemper, About Home/Veterinary Medicine . . . Diseases & Conditions - Dogs, see [3], accessed 14 December 2014.[better source needed]

  • Elia G, Belloli C, Cirone F; et al. (February 2008). "In vitro efficacy of ribavirin against canine distemper virus". Antiviral Res. 77 (2): 108–13. doi:10.1016/j.antiviral.2007.09.004. PMID 17949825.[non-primary source needed]

  • Pomeroy, Laura W.; Bjørnstad, Ottar N.; Holmes, Edward C. (2008). "The Evolutionary and Epidemiological Dynamics of the Paramyxoviridae". Journal of Molecular Evolution 66 (2): 98–106. doi:10.1007/s00239-007-9040-x. PMC 3334863. PMID 18217182.[non-primary source needed]

  • Moore, V.A. (1902). The Pathology and Differential Diagnosis of Infectious Diseases of Animals. Ithaca, NY: Taylor & Carpenter.[page needed][better source needed]

  • Assessment, M.E. (2005). Ecosystems and human well-being. World Resources Institute.[page needed]

  • Nishi, T.; Tsukiyama-Kohara, K.; Togashi, K.; Kohriyama, N.; Kai, C. (2004). "Involvement of apoptosis in syncytial cell death induced by canine distemper virus". Comparative Immunology, Microbiology and Infectious Diseases 27 (6): 445–55. doi:10.1016/j.cimid.2004.01.007. PMID 15325517.[non-primary source needed]

  • Editorial Staff at remedy's HealthCommunities.com, 2001-2014, "Health Topics: Pet Health: Canine Distemper: Canine Distemper Overview, Canine Distemper Signs & Symptoms, Canine Distemper Transmission," see [4], accessed 15 December 2014.[better source needed]

  • Carter, G.R.; Flores, E.F.; Wise, D.J. (2006). "Paramyxoviridae". A Concise Review of Veterinary Virology. Retrieved 2006-06-24.[page needed]

  • Hirsch, D.C.; Zee, C.; et al. (1999). Veterinary Microbiology. Blackwell Publishing.[page needed]

  • Appel, M.J.G.; Summers, B.A. (1999). "Canine Distemper: Current Status". Recent Advances in Canine Infectious Diseases. Retrieved 2006-06-24.[page needed]

  • Dewey, C.W. (2003). A Practical Guide to Canine and Feline Neurology. Iowa State Pr.[page needed]

  • https://acadogs.com/Canine_Distemper.html

  • Hirsh DC, Zee YC (1999). Veterinary Microbiology. Blackwell Publishing. ISBN 978-0-86542-543-9.

  • "Canine Distemper: What You Need To Know". Veterinary Insider. Retrieved 2012-04-09.

  • "NDV-Induced Serum". Kind Hearts in Action. November 5, 2009. Retrieved October 31, 2012.

  • "Canine Distemper (CDV)". UC Davis Koret Shelter Medicine Program. 2004. Retrieved 2013-08-17.

  • Rodeheffer, C; Von Messling, V; Milot, S; Lepine, F; Manges, AR; Ward, BJ (2007). "Disease manifestations of canine distemper virus infection in ferrets are modulated by vitamin a status". The Journal of nutrition 137 (8): 1916–22. PMID 17634264.[non-primary source needed]

  • Elia, Gabriella; Belloli, Chiara; Cirone, Francesco; Lucente, Maria Stella; Caruso, Marta; Martella, Vito; Decaro, Nicola; Buonavoglia, Canio; Ormas, Paolo (2008). "In vitro efficacy of ribavirin against canine distemper virus". Antiviral Research 77 (2): 108–13. doi:10.1016/j.antiviral.2007.09.004. PMID 17949825.[non-primary source needed]

  • Jeulin, H.; Venard, V.; Carapito, D.; Finance, C.; Kedzierewicz, F. (2009). "Effective ribavirin concentration in mice brain using cyclodextrin as a drug carrier: Evaluation in a measles encephalitis model". Antiviral Research 81 (3): 261–6. doi:10.1016/j.antiviral.2008.12.006. PMID 19133295.[non-primary source needed]

  • Mangia, Simone Henriques (2008). Tratamento experimental de cães naturalmente infectados com o vpirus cinomose na fase neurológica com o uso de riba virina e dimetil-sulfóxido (DMSO) [Experimental treatment of naturally infected dogs with canine distemper virus, in neurological stage, using Ribavirin and Dimethylsulphoxide (DMSO)] (PDF) (Master's Thesis) (in Portuguese).[page needed][self-published source?][better source needed]

  • Marks IM; et al. (2001). "Administration of ribavirin with food results in higher and less variable plasma ribavirin concentrations". Journal of Hepatology 34: 1–257. PMID 11436881.[non-primary source needed]

  • Gordon, M.T.; Anderson, D.C.; Sharpe, P.T. (1991). "Canine distemper virus localised in bone cells of patients with Paget's disease". Bone 12 (3): 195–201. doi:10.1016/8756-3282(91)90042-H. PMID 1910961.[non-primary source needed]

  • Friedrichs, William E.; Reddy, Sakamuri V.; Bruder, Jan M.; Cundy, Tim; Cornish, Jillian; Singer, Frederick R.; Roodman, G. David (2002). "Sequence Analysis of Measles Virus Nucleocapsid Transcripts in Patients with Paget's Disease". Journal of Bone and Mineral Research 17 (1): 145–51. doi:10.1359/jbmr.2002.17.1.145. PMID 11771661.[non-primary source needed]

  • Basle, M. F.; Fournier, J. G.; Rozenblatt, S.; Rebel, A.; Bouteille, M. (1986). "Measles Virus RNA Detected in Paget's Disease Bone Tissue by in situ Hybridization". Journal of General Virology 67 (5): 907–13. doi:10.1099/0022-1317-67-5-907. PMID 3701300.[non-primary source needed]

  • Hoyland, Judith A; Dixon, Janet A; Berry, Jacqueline L; Davies, Michael; Selby, Peter L; Mee, Andrew P (2003). "A comparison of in situ hybridisation, reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ-RT-PCR for the detection of canine distemper virus RNA in Paget's disease". Journal of Virological Methods 109 (2): 253–9. doi:10.1016/S0166-0934(03)00079-X. PMID 12711070.[non-primary source needed]

  • "AHS ISSUES VALLEYWIDE PET HEALTH ALERT". Arizona Humane Society. Retrieved 2012-04-09.

  • "Pet Overpopulation" (pdf). Teacher Newsletter (The American Society for the Prevention of Cruelty to Animals). Retrieved 2013-08-17.

  •  end quote from:
    https://en.wikipedia.org/wiki/Canine_distemper

    No comments: