- Why can ARs produce extreme rainfall on West Coast?
-
Atmospheric River Q & A
What are atmospheric rivers, in more scientific terms?
ARs are the water-vapor rich part of the broader warm conveyor belt (e.g., Browning, 1990; Carlson, 1991), that is found in extratropical cyclones ("storms"). They result from the action of winds associated with the storm drawing together moisture into a narrow region just ahead of the cold front where low-level winds can sometimes exceed hurricane strength. The term atmospheric river was coined in a seminal scientific paper published in 1998 by researchers Zhu and Newell at MIT (Zhu and Newell 1998). Because they found that most of the water vapor was transported in relatively narrow regions of the atmosphere (90% of the transport occurred typically in 4-5 long, narrow regions roughly 400 km wide), the term atmospheric river was used. A number of formal scientific papers have since been published building on this concept (see the publication list), and forecasters and climate researchers are beginning to apply the ideas and methods to their fields. The satellite images at top-left show strong ARs as seen by satellite. The advent of these specialized satellite observations have revealed ARs over the oceans and have revolutionized understanding of the global importance of ARs (more traditional satellite data available in the past could not clearly detect AR conditions). The interpretation of these satellite images, which represent only water vapor, not winds, was confirmed using NOAA research aircraft data over the Eastern Pacific Ocean and wind profilers along the coast (Ralph et al. 2004). The event shown in the bottom-left image was documented by Ralph et al. (2006), which concluded this AR produced roughly 10 inches of rain in 2 days and caused a flood on the Russian River of northern California. It was also shown that all floods on the Russian River in the 7-year period of study were associated with AR conditions. As of late 2010 there have been a number of papers published on major west coast storms where the presence and importance of AR conditions have been documented. These are provided in an informal list of the "Top Ten ARs" of the last several years on the U.S. West Coast. It is now recognized that the well-known "Pineapple express," storms (a term that has been used on the U.S. West Coast for many years) correspond to a subset of ARs, i.e., those that have a connection to the tropics near Hawaii. In some of the most extreme ARs, the water vapor transport is enhanced by the fact that they entrain (draw in) water vapor directly from the tropics (e.g., Bao et al 2006, Ralph et al. 2011).Can we forecast atmospheric rivers?
National Weather Service forecasters located along the west coast are now familiar with the concept of atmospheric rivers and can identify these phenomena in current numerical forecast models. This provides them the capability to give advanced warning of potential heavy rain sometime 5 to 7 days in advance. They have also learned to monitor polar orbiter microwave satellite imagery that provides advanced warning of the presence and movement of these phenomena in the Pacific. During the last two winters, with the development of atmospheric river observatories, forecasters have been able to monitor the strength and location of these rivers as they make landfall and thus improve short-term rainfall forecasts for flash flooding. There are still challenges to predicting rainfall totals in these events as models still struggle with the details of the duration and timing of AR's as they make landfall.
Why are ARs capable of producing extreme rainfall on the U.S. West Coast?
AR conditions are conducive to creating heavy orographic precipitation (Ralph et al., 2005; MWR) because:
- they are rich in water vapor,
- they are associated with strong winds that force the water vapor up mountain sides,
- the atmospheric conditions do not inhibit upward motions (because the atmospheric static stability is nearly neutral up to about 3 km MSL, on average)
- once the air moves upward, the water vapor condenses and can form precipitation
What is the role of atmospheric rivers in creating floods?
- Research has shown there were 42 ARs that impacted CA during the winters from 1997 to 2006, and the resulting seven floods that occurred on the Russian River watershed northwest of San Francisco during this period were all associated with AR conditions.
- A major flood in California, known as the "New years Day Flood" in 1997 cause over $1 Billion in damages and had a well-defined AR.
- Less formally, ARs are known to result in an order of magnitude larger post-storm stream flow "bumps" (increases) than other California storms, in the Merced and American Rivers.
- The Pacific Northwest also regularly experiences this type of storm. Case in point is the landfalling AR of early November 2006 that produced heavy rainfall and devastating flooding and debris flows with region-wide damage exceeding $50 million.
- The Notable AR Events list highlights additional high-impact AR events.
How are science and applications of ARs being addressed?
- Research experiments (CalJet and PacJet) performed by NOAA in the 1998, 2001, and 2002 were conducted to better understand landfalling Pacific winter storms.
- CalJet/PacJet led to the development of the NOAA Hydrometeorology Testbed (HMT; hmt.noaa.gov). HMT's aim is to accelerate the development and prototyping of advanced hydrometeorological observations, models, and physical process understanding, and to foster infusion of these advances into forecasting operations of the NWS, and to support the broader user community's needs for 21st Century precipitation information.
- Within HMT, scientists have developed and prototyped an atmospheric river observatory (ARO) designed to further our understanding of the impact of ARs on enhancing precipitation in the coastal mountains and the high Sierra of California.
- Studies of the potential impacts of climate change on AR characteristics is the focus on an ongoing project – CalWater that is partnering with HMT, the California Energy Commission, Scripps Institution of Oceanography, USGS and others, to explore the potential implications for flood risk and water supply.
- Under the USGS-led Multihazards project, ARs have become the focus of an emergency preparedness scenario for California that is intended to help the region prepare for a potentially catastrophic series of ARs. The scenario is named "ARkStorm" and has developed an informational video for use with the public (http://urbanearth.gps.caltech.edu/winter-storm/).
What are the benefits of studying atmospheric rivers?
The community of flood control, water supply and reservoir operators of the West Coast states see ARs as a key phenomenon to understand, monitor and predict as they work to mitigate the risks of major flood events, while maintaining adequate water supply. The frequency and strength of AR events in a given region over the course of a typical west-coast wet season greatly influences the fate of droughts, floods, and many key human endeavors and ecosystems. Better coupling of climate forecasts with seasonal weather forecasts of ARs can improve water management decisions. Long-term monitoring using satellite measurements, offshore aircraft reconnaissance, and land-based atmospheric river observatories, combined with better numerical modeling, scientific progress, and the development of AR-based smart decision aids for resource managers, will enable society to be more resilient to storms and droughts, while protecting our critical ecosystems.
end quote from:
To the best of my ability I write about my experience of the Universe Past, Present and Future
Top 10 Posts This Month
- Here Are the New Members of Donald Trump’s Administration So Far
- Trump and Musk unleash a new kind of chaos on Washington
- Greenland's leader says "we are not for sale" after Trump suggests U.S. takeover
- Crowdsourcing - Wikipedia
- Thousands of Jews have left Israel since the October 7 attacks
- The AI Translated this about Drone Sightings in Europe from German to English for me
- The state of the Arctic: High temperatures, melting ice, fires and unprecedented emissions
- Philosophic Inquiry is nothing more than asking questions and looking for real (Not imagined) answers
- "There is nothing so good that no bad may come of it and nothing so bad that no good may come of it": Descartes
- reprint of: Friday, March 18, 2016 More regarding "As Drones Evolve"
Sunday, May 24, 2015
Why can Atmospheric Rivers create extreme rainfall in California and west coast?
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment