- I put "building supercomputers by stacking pentium chips" into google search and came up with the following about building a 300 node Raspberry Pi supercomputer as of 2017 instead. so I thought I would share my results.
-
HPC Architecture
Optimized for AI Convergence
Read the White PaperIntel's Xe Architecture
Discover Intel's Future Compute
Architecture For Exponential Scale
Search Results
Web results
Jun 1, 2017 - With 18 cores and a price tag of $1999, the processor is known as a teraflop chip. ... It's as fast as a turn-of-the-century supercomputer. ... “If you can build a petaflop system for many millions of dollars, that means you can build 10 teraflop systems that companies ... By Stack Commerce posted Apr 23rd, 2019.
Missing: stacking | Must include: stacking
begin quote from:
Sep 29, 2017 - The Top 500 supercomputers all cost millions. The paper uses the original Raspberry Pi (RPi), but today you can get the RPi3, which is roughly 4x faster, for $35. The original was roughly the power of 300MHz Pentium 2, which might have been the processor in the early Google clusters.
May 23, 2013 - Who says you need a few million bucks to build a supercomputer? Joshua ... For his project Kiepert overclocked the processors to 1GHz.
Missing: pentium | Must include: pentium
This article presents a detailed timeline of events in the history of computing from 1990 to 1999. .... after settling a dispute with Stac over their compression program , Stacker. ... June 1, Intel releases the 133 MHz version of the Pentium processor. .... at $399 and $499, creating the sub-$600 market and launching a price war.
Building a 300 node Raspberry Pi supercomputer
Commodity hardware makes possible massive 100,000 node clusters, because, after all, commodity hardware is "cheap" -- if you're Google. What if you want a lot of cycles but don't have a few million dollars to spend? Think Raspberry Pi.
A guide to Raspberry Pi in 60 seconds
Poor people have compute needs, too, especially if they are chronically underfunded academics. That's what drove Larry Page and Sergey Brin to cobble together PC motherboards for several iterations of Google clusters.
But when you start talking about hundreds of PCs the prices start adding up to hundreds of thousands, even millions of dollars. That's the problem that a group of computer scientists tackled in Affordable and Energy-Efficient Cloud Computing Clusters: The Bolzano Raspberry Pi Cloud Cluster Experimentby Pekka Abrahamsson, Sven Helmer, Nattakarn Phaphoom, Lorenzo Nicolodi, Nick Preda, Lorenzo Miori, Matteo Angriman, Juha Rikkilä, Xiaofeng Wang, Karim Hamily, and Sara Bugoloni, all of the Free University of Bozen-Bolzano, in Bolzano Italy.
WILL IT MAKE THE TOP 500 LIST?
Probably not. The Top 500 supercomputers all cost millions.
But bragging rights? Priceless.
The paper uses the original Raspberry Pi (RPi), but today you can get the RPi3, which is roughly 4x faster, for $35. The original was roughly the power of 300MHz Pentium 2, which might have been the processor in the early Google clusters. Bottom line, you can do real work on this class of machine.
THE CONFIGURATION
Network. They used a star configuration, where a number of low-cost fan out switches connect to a single interconnect switch. Each RPi connects to a port on the fan out switches.
Storage. The SD cards on the RPi are too slow for writes, so the team attached a QNAP 4-drive NAS storage array and used a logical volume manager to provide volumes to sub clusters. The SD card had the OS on it so each RPi could boot using local storage.
Mounting. Design students at the Free University of Bolzano devised a rack system with individual holders for each RPi. The holders are clear so status lights are visible, and individual RPis can be added or removed while the system is running. The racks are stackable.
Power. Three-hundred individual power supplies would be unwieldy, so they took old PC power supply units to power each rack unit. Yes, if a PSU failed, 24 nodes would go down.
Software. They used Debian v7 as a base for enough functionality to boot an individual RPi so it could request the current configuration from the master RPi.
USING THE CLUSTER
The RPi used in the cluster wasn't powerful enough to run OpenStack or other current open source clustering software. So the team focused on providing subcluster management and monitoring so users could work in parallel on the cluster.
Given the added power of the RPi3, I wouldn't be surprised if it could handle some of the available open source clusters. In fact, in another paper researchers built a small RPi Hadoop cluster for image analysis that could be expanded to 300 nodes.
THE STORAGE BITS TAKE
A number of folks have built RPi clusters, but this one is the largest in the literature. One grad student built an RPi 32-node Beowulf cluster. The University of Southhampton built a 64-node RPi cluster, using Legos to build the frame. If you want to do it yourself, there are papers and videos to show you how.
The mobile revolution has pushed low-power, low cost processors far further than I'd ever imagined, back when an an eight-node PS3 supercomputer was state-of-the-home-brew art. The practical use for RPi clusters is as edge computing pre-processors and as "cloudlets" to provide low-cost services to remote and/or impoverished communities.
As ARM power continues to grow, these clusters will find a place in the arsenal of computing solutions.
Courteous comments welcome, of course. What will we be able to do with RPi 4?
Related stories
- 12 of the best Raspberry Pi alternatives
- Umain eyes UWB sensors in sync with Raspberry Pi 3
- Raspberry Pi Zero-sized PocketBeagle: $25 open-source computer is tiny as a key fob
- ReSpeaker releases its 4-microphone Raspberry Pi software for voice applications
- Raspberry Pi-based 4G AutoPi lets you program your car
No comments:
Post a Comment