Wednesday, November 6, 2019

Wikipedia: Sintering of metallic powders

partial quote from:

Sintering of metallic powders[edit]

Most, if not all, metals can be sintered. This applies especially to pure metals produced in vacuum which suffer no surface contamination. Sintering under atmospheric pressure requires the use of a protective gas, quite often endothermic gas. Sintering, with subsequent reworking, can produce a great range of material properties. Changes in density, alloying, and heat treatments can alter the physical characteristics of various products. For instance, the Young's modulus En of sintered iron powders remains somewhat insensitive to sintering time, alloying, or particle size in the original powder for lower sintering temperatures, but depends upon the density of the final product:
where D is the density, E is Young's modulus and d is the maximum density of iron.
Sintering is static when a metal powder under certain external conditions may exhibit coalescence, and yet reverts to its normal behavior when such conditions are removed. In most cases, the density of a collection of grains increases as material flows into voids, causing a decrease in overall volume. Mass movements that occur during sintering consist of the reduction of total porosity by repacking, followed by material transport due to evaporation and condensation from diffusion. In the final stages, metal atoms move along crystal boundaries to the walls of internal pores, redistributing mass from the internal bulk of the object and smoothing pore walls. Surface tension is the driving force for this movement.
A special form of sintering (which is still considered part of powder metallurgy) is liquid-state sintering in which at least one but not all elements are in a liquid state. Liquid-state sintering is required for making cemented carbide and tungsten carbide.
Sintered bronze in particular is frequently used as a material for bearings, since its porosity allows lubricants to flow through it or remain captured within it. Sintered copper may be used as a wicking structure in certain types of heat pipe construction, where the porosity allows a liquid agent to move through the porous material via capillary action. For materials that have high melting points such as molybdenumtungstenrheniumtantalumosmium and carbon, sintering is one of the few viable manufacturing processes. In these cases, very low porosity is desirable and can often be achieved.
Sintered metal powder is used to make frangible shotgun shells called breaching rounds, as used by military and SWAT teams to quickly force entry into a locked room. These shotgun shells are designed to destroy door deadbolts, locks and hinges without risking lives by ricocheting or by flying on at lethal speed through the door. They work by destroying the object they hit and then dispersing into a relatively harmless powder.
Sintered bronze and stainless steel are used as filter materials in applications requiring high temperature resistance while retaining the ability to regenerate the filter element. For example, sintered stainless steel elements are employed for filtering steam in food and pharmaceutical applications, and sintered bronze in aircraft hydraulic systems.
Sintering of powders containing precious metals such as silver and gold is used to make small jewelry items.

Advantages[edit]

Particular advantages of the powder technology include:
  1. Very high levels of purity and uniformity in starting materials
  2. Preservation of purity, due to the simpler subsequent fabrication process (fewer steps) that it makes possible
  3. Stabilization of the details of repetitive operations, by control of grain size during the input stages
  4. Absence of binding contact between segregated powder particles – or "inclusions" (called stringering) – as often occurs in melting processes
  5. No deformation needed to produce directional elongation of grains
  6. Capability to produce materials of controlled, uniform porosity.
  7. Capability to produce nearly net-shaped objects.
  8. Capability to produce materials which cannot be produced by any other technology.
  9. Capability to fabricate high-strength material like turbine blades.
  10. After sintering the mechanical strength to handling becomes higher.
The literature contains many references on sintering dissimilar materials to produce solid/solid-phase compounds or solid/melt mixtures at the processing stage. Almost any substance can be obtained in powder form, through either chemical, mechanical or physical processes, so basically any material can be obtained through sintering. When pure elements are sintered, the leftover powder is still pure, so it can be recycled.

Disadvantages[edit]

Particular disadvantages of the powder technology include:
  1. 100% sintered (iron ore) cannot be charged in the blast furnace.[citation needed]
  2. Sintering cannot create uniform sizes.
  3. Micro- and nano-structures produced before sintering are often destroyed.

Plastics sintering

No comments: