- From August 28 to September 2, 1859, numerous sunspots were ... way" of ambient solar wind plasma for the Carrington event.
Solar storm of 1859
From Wikipedia, the free encyclopedia
Studies have shown that a solar storm of this magnitude occurring today would likely cause more widespread problems for a modern and technology-dependent society.[2][3] The solar storm of 2012 was of similar magnitude, but it passed Earth's orbit without striking the planet.[4]
Contents
Carrington Flare
From August 28 to September 2, 1859, numerous sunspots were observed on the Sun. On August 29, southern aurorae were observed as far north as Queensland, Australia.[5] Just before noon on September 1, the English amateur astronomers Richard Carrington and Richard Hodgson independently made the first observations of a solar flare.[6] The flare was associated with a major coronal mass ejection (CME) that travelled directly toward Earth, taking 17.6 hours to make the 150 million kilometre (93 million mile) journey. It is believed that the relatively high speed of this CME (typical CMEs take several days to arrive at Earth) was made possible by a prior CME, perhaps the cause of the large aurora event on August 29, that "cleared the way" of ambient solar wind plasma for the Carrington event.[6]
Because of a geomagnetic solar flare effect ("magnetic crochet")[7] observed in the Kew Observatory magnetometer record by Scottish physicist Balfour Stewart and a geomagnetic storm observed the following day, Carrington suspected a solar-terrestrial connection.[8] Worldwide reports on the effects of the geomagnetic storm of 1859 were compiled and published by American mathematician Elias Loomis, which support the observations of Carrington and Stewart.
On September 1–2, 1859, one of the largest recorded geomagnetic storms (as recorded by ground-based magnetometers) occurred. Aurorae were seen around the world, those in the northern hemisphere as far south as the Caribbean; those over the Rocky Mountains in the U.S. were so bright that their glow awoke gold miners, who began preparing breakfast because they thought it was morning.[6] People in the northeastern United States could read a newspaper by the aurora's light.[9] The aurora was visible as far from the poles as Sub-Saharan Africa (Senegal, Mauritania, perhaps Monrovia, Liberia), Monterrey and Tampico in Mexico, Queensland, Cuba, Hawaii,[10] and even at lower latitudes very close to the equator, such as in Colombia.[11]
Telegraph systems all over Europe and North America failed, in some cases giving telegraph operators electric shocks.[12] Telegraph pylons threw sparks.[13] Some telegraph operators could continue to send and receive messages despite having disconnected their power supplies.[14]
On Saturday, September 3, 1859, the Baltimore American and Commercial Advertiser reported, "Those who happened to be out late on Thursday night had an opportunity of witnessing another magnificent display of the auroral lights. The phenomenon was very similar to the display on Sunday night, though at times the light was, if possible, more brilliant, and the prismatic hues more varied and gorgeous. The light appeared to cover the whole firmament, apparently like a luminous cloud, through which the stars of the larger magnitude indistinctly shone. The light was greater than that of the moon at its full, but had an indescribable softness and delicacy that seemed to envelop everything upon which it rested. Between 12 and 1 o'clock, when the display was at its full brilliancy, the quiet streets of the city resting under this strange light, presented a beautiful as well as singular appearance."[15]
In June 2013, a joint venture from researchers at Lloyd's of London and Atmospheric and Environmental Research (AER) in the United States used data from the Carrington Event to estimate the current cost of a similar event to the U.S. alone at $0.6–2.6 trillion.[2]
Other evidence and similar events
Ice cores containing thin nitrate-rich layers have been analysed to reconstruct a history of past solar storms predating reliable observations. It is claimed that data from Greenland ice cores show evidence of individual solar-proton events, including the Carrington event.[16] More recent work by the ice core community shows that nitrate spikes are not a result of solar energetic particle events, and, indeed, no consistency is found in cores from Greenland and Antarctica, and nitrate events can be due to terrestrial events, such as burnings, so use of this technique is in doubt.[17][18] Less severe storms have occurred in 1921 and 1960, when widespread radio disruption was reported. The March 1989 geomagnetic storm knocked out power across large sections of Quebec. On July 23, 2012 a "Carrington-class" Solar Superstorm (Solar flare, Coronal mass ejection, Solar EMP) was observed; its trajectory missed Earth in orbit. Information about these observations was first shared publicly by NASA on April 28, 2014.[4][19]
See also
References
- Philips, Tony (January 21, 2009). "Severe Space Weather--Social and Economic Impacts". NASA Science: Science News (science.nasa.gov). Retrieved February 16, 2011.
- "Video (04:03) – Carrington-class coronal mass ejection narrowly misses Earth". NASA. April 28, 2014. Retrieved July 26, 2014.
Further reading
- Cliver, E. W.; Svalgaard, L. (2004). "The 1859 Solar–Terrestrial Disturbance and the Current Limits of Extreme Space Weather Activity" (PDF). Solar Physics 224: 407. Bibcode:2004SoPh..224..407C. doi:10.1007/s11207-005-4980-z.
- Tsurutani, B. T.; Gonzalez, W. D.; Lakhina, G. S.; Alex, S. (2003). "The extreme magnetic storm of 1–2 September 1859". Journal of Geophysical Research 108. Bibcode:2003JGRA..108.1268T. doi:10.1029/2002JA009504.
- Issue 2 of Volume 38, Pages 115-388 (2006), of Advances in Space Research, an issue entitled "The Great Historical Geomagnetic Storm of 1859: A Modern Look"
- Robertclauer, C.; Siscoe, G. (2006). "The great historical geomagnetic storm of 1859: A modern look". Advances in Space Research 38 (2): 117–118. Bibcode:2006AdSpR..38..117R. doi:10.1016/j.asr.2006.09.001.
- Cliver, E. (2006). "The 1859 space weather event: Then and now". Advances in Space Research 38 (2): 119–129. Bibcode:2006AdSpR..38..119C. doi:10.1016/j.asr.2005.07.077.
- Green, J.; Boardsen, S. (2006). "Duration and extent of the great auroral storm of 1859". Advances in Space Research 38 (2): 130–135. Bibcode:2006AdSpR..38..130G. doi:10.1016/j.asr.2005.08.054.
- Silverman, S. (2006). "Comparison of the aurora of September 1/2, 1859 with other great auroras". Advances in Space Research 38 (2): 136–144. Bibcode:2006AdSpR..38..136S. doi:10.1016/j.asr.2005.03.157.
- Green, J.; Boardsen, S.; Odenwald, S.; Humble, J.; Pazamickas, K. (2006). "Eyewitness reports of the great auroral storm of 1859". Advances in Space Research 38 (2): 145–154. Bibcode:2006AdSpR..38..145G. doi:10.1016/j.asr.2005.12.021.
- Humble, J. (2006). "The solar events of August/September 1859 – Surviving Australian observations". Advances in Space Research 38 (2): 155–158. Bibcode:2006AdSpR..38..155H. doi:10.1016/j.asr.2005.08.053.
- Boteler, D. (2006). "The super storms of August/September 1859 and their effects on the telegraph system". Advances in Space Research 38 (2): 159–172. Bibcode:2006AdSpR..38..159B. doi:10.1016/j.asr.2006.01.013.
- Siscoe, G.; Crooker, N.; Clauer, C. (2006). "Dst of the Carrington storm of 1859". Advances in Space Research 38 (2): 173–179. Bibcode:2006AdSpR..38..173S. doi:10.1016/j.asr.2005.02.102.
- Nevanlinna, H. (2006). "A study on the great geomagnetic storm of 1859: Comparisons with other storms in the 19th century". Advances in Space Research 38 (2): 180–187. Bibcode:2006AdSpR..38..180N. doi:10.1016/j.asr.2005.07.076.
- Kappenman, J. (2006). "Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921". Advances in Space Research 38 (2): 188–199. Bibcode:2006AdSpR..38..188K. doi:10.1016/j.asr.2005.08.055.
- Silverman, S. (2006). "Low latitude auroras prior to 1200 C.E. and Ezekiel's vision". Advances in Space Research 38 (2): 200–208. Bibcode:2006AdSpR..38..200S. doi:10.1016/j.asr.2005.03.158.
- Shea, M.; Smart, D. (2006). "Geomagnetic cutoff rigidities and geomagnetic coordinates appropriate for the Carrington flare Epoch". Advances in Space Research 38 (2): 209–214. Bibcode:2006AdSpR..38..209S. doi:10.1016/j.asr.2005.03.156.
- Smart, D.; Shea, M.; McCracken, K. (2006). "The Carrington event: Possible solar proton intensity–time profile". Advances in Space Research 38 (2): 215–225. Bibcode:2006AdSpR..38..215S. doi:10.1016/j.asr.2005.04.116.
- Townsend, L. W.; Stephens, D. L.; Hoff, J. L.; Zapp, E. N.; Moussa, H. M.; Miller, T. M.; Campbell, C. E.; Nichols, T. F. (2006). "The Carrington event: Possible doses to crews in space from a comparable event". Advances in Space Research 38 (2): 226–231. Bibcode:2006AdSpR..38..226T. doi:10.1016/j.asr.2005.01.111.
- Shea, M.; Smart, D.; McCracken, K.; Dreschhoff, G.; Spence, H. (2006). "Solar proton events for 450 years: The Carrington event in perspective". Advances in Space Research 38 (2): 232–238. Bibcode:2006AdSpR..38..232S. doi:10.1016/j.asr.2005.02.100.
- Burke, W.; Huang, C.; Rich, F. (2006). "Energetics of the April 2000 magnetic superstorm observed by DMSP". Advances in Space Research 38 (2): 239–252. Bibcode:2006AdSpR..38..239B. doi:10.1016/j.asr.2005.07.085.
- Manchester IV, W. B.; Ridley, A. J.; Gombosi, T. I.; De Zeeuw, D. L. (2006). "Modeling the Sun-to-Earth propagation of a very fast CME". Advances in Space Research 38 (2): 253–262. Bibcode:2006AdSpR..38..253M. doi:10.1016/j.asr.2005.09.044.
- Ridley, A. J.; De Zeeuw, D. L.; Manchester, W. B.; Hansen, K. C. (2006). "The magnetospheric and ionospheric response to a very strong interplanetary shock and coronal mass ejection". Advances in Space Research 38 (2): 263–272. Bibcode:2006AdSpR..38..263R. doi:10.1016/j.asr.2006.06.010.
- Li, X.; Temerin, M.; Tsurutani, B.; Alex, S. (2006). "Modeling of 1–2 September 1859 super magnetic storm". Advances in Space Research 38 (2): 273–279. Bibcode:2006AdSpR..38..273L. doi:10.1016/j.asr.2005.06.070.
- Odenwald, S.; Green, J.; Taylor, W. (2006). "Forecasting the impact of an 1859-calibre superstorm on satellite resources". Advances in Space Research 38 (2): 280–297. Bibcode:2006AdSpR..38..280O. doi:10.1016/j.asr.2005.10.046.
- Boteler, D. (2006). "Comment on time conventions in the recordings of 1859". Advances in Space Research 38 (2): 301–303. Bibcode:2006AdSpR..38..301B. doi:10.1016/j.asr.2006.07.006.
- Wilson, L. (2006). "Excerpts from and Comments on the Wochenschrift für Astronomie, Meteorologie und Geographie, Neue Folge, zweiter Jahrgang (new series 2)". Advances in Space Research 38 (2): 304–312. Bibcode:2006AdSpR..38..304W. doi:10.1016/j.asr.2006.07.004.
- Shea, M.; Smart, D. (2006). "Compendium of the eight articles on the "Carrington Event" attributed to or written by Elias Loomis in the American Journal of Science, 1859–1861". Advances in Space Research 38 (2): 313–385. Bibcode:2006AdSpR..38..313S. doi:10.1016/j.asr.2006.07.005.
External links
Wikimedia Commons has media related to Solar activity. |
- Carrington, R. C. (1859). "Description of a Singular Appearance seen in the Sun on September 1, 1859". Monthly Notices of the Royal Astronomical Society 20: 13–5. Bibcode:1859MNRAS..20...13C. doi:10.1093/mnras/20.1.13.
- Bell, Trudy E.; Phillips, Tony (May 6, 2008). "A Super Solar Flare". Science@NASA (science.nasa.gov).
- Brooks, Michael (March 23, 2009). "Space storm alert: 90 seconds from catastrophe". New Scientist (www.newscientist.com). Archived from the original on March 22, 2009. Retrieved March 28, 2009.
- "The Largest Magnetic Storm on Record, The "Carrington Event" of August 27 to September 7, 1859". British Geological Survey (National Environment Research Council). 2011. Retrieved March 28, 2009.
- Clark, Stuart (2007). The Sun Kings: The Unexpected Tragedy of Richard Carrington and the Tale of How Modern Astronomy Began. ISBN 978-0-691-12660-9.
- Excerpts of Articles from Newspapers concerning the Carrington Event.
|
No comments:
Post a Comment