Wednesday, March 23, 2011

Radioactive Cloud over World Nuclear Renaissance

 Note: I found the following article written in Asia about the nuclear reactors at Fukushima on March 23rd.

2nd note March 28th: I found this article to be very helpful so even though it might confuse it by converting it to Japanese I decided to take the chance that it might be helpful. So at the bottom of the page look for the following article in Japanese. I hope this is helpful.

I decided to include the whole article because it seemed to be thoughtfully written on the subject.begin quote from below newsclick article.

 http://newsclick.in/international/fukushima-%E2%80%93-radioactive-cloud-over-nuclear-renaissance

Fukushima – Radioactive Cloud over Nuclear Renaissance


Prabir Purkayastha, Newsclick, March 23
Only the very foolish will argue that Fukushima's near meltdown in 3 reactors and a fire in the fuel holding pond of the 4th does not warrant a re-look at the nuclear energy polices of the world or of the country. While nuclear energy could remain a serious option, we must also accept that taking it off the table is also an option.

The Fukushima plant had 6 reactors, out of which 3 were already shut down before the massive earthquake and tsunami. The remaining 3 running reactors were safely shut off when the earthquake hit Japan. With the earthquake, the grid power was not available and the station went off-grid. The back-up power generators, which were installed in low lying bunkers, kicked in for some time, before being taken out by the tsunami, creating the crisis of the cooling systems. The partial melt-down  of the Unit 1, 2 and 3 reactor fuel rods and the consequent hydrogen explosions were the direct result of this. The containment in units 2 & 3 seem to have failed, as per the reports of the Japanese authorities, releasing radiation.
All fuel rods have residual heat which needs cooling – whether in the reactor core or in the cooling ponds. Even after being shut-down, power and cooling systems have to work. It is this failure that lead to the crisis in the Fukushima plant.The fires in the cooling ponds of reactors 3 and 4 were the consequence of having no back-up power and not being able to replenish the water boiling off. Perhaps the pre-occupation over the near meltdown of the Units 1, 2 and 3 meant that the other 3 reactors that had been shut down did not receive attention. It is only when the fire started in the cooling pond of reactor 4 that this was recognised as a new threat. Subsequently, there was a similar fire in unit number 3 as well.
Kyodo News Agency reported on March 23 that the situation in Fukushima still remains difficult. While external power has been restored to all the units now, the problem is that each piece of equipment has to be tested for damage before it can be powered. The main focus now is to resume control room functions so that minimum safety operations and monitoring of the radio active levels in the plant can be done in the safer environs of the control room. As of now, the cooling functions at the No. 1, No. 2 and No. 3 reactors, and the pools storing spent nuclear fuel at the No. 1, No. 2, No. 3 and No. 4 units still remain lost.
The immediate danger to a melt-down in the reactors or in the reactor cooling ponds has been averted, but this does not mean by any means that the crisis is over. The problem for the plant staff is to control the cooling systems of the 3 reactors and the 6 cooling ponds under conditions that are hazardous and with equipment that have been badly damaged. This is damage is not only due to the earthquake and the tsunami but also the hydrogen explosions that have ripped through the buildings of units 1 to 4. Even now, the plant staff is pumping sea water to cool the reactors with their temperatures beyond the maximum specified by the reactor manufacturer.
This scenario of controlling the reactors with failing equipment could continue for months. Bringing the reactors to a safe state is not possible unless the reactors are decommissioned. That the first 4 reactors can never be used is obvious. Once sea water is put in the reactor core, it is the end of the reactor. The 4th unit has had a hydrogen explosion and is also out. It is doubtful that unit 5 and 6 will ever produce power again. They may at most be easier to maintain in a shut down state and also easier to decommission.
At any point the temperature can rise, the containment could fail and further explosions could take place. An emergency state would continue till the reactors are effectively de-commissioned People are not talking about this, but decommissioning of these reactors will not be easy, particularly as they have stored fuel in cooling ponds in the same buildings that house the rectors. It is this inventory of stored fuel rods which is likely to be the major problem. A Chernobyl solution of burying the reactors under tons of concrete for reactors could work, but not for the stored fuel rods, particularly as they are not ground level. One cannot pour tons of concrete on the 4th floor of a building – this will bring everything crashing down.
The Japanese authorities have now reported dangerous radiation levels in a 30 Km radius of the plant and also high levels of radiation in a number of food items in the Fukushima Prefecture. Much higher levels of radiation have also been recorded in sea water around Fukushima. Obviously, dangerous amounts of radiation have been released and continue to be released from the plant, even though we have no measurement of the amounts released. Even today, the operators were not able to enter one of the plant buildings because of a high level of radiation there – the level noted was 500 millieverts per hour. The normal amount of radiation a worker is allowed in Japan is 100 millisieverts per year, though this has been raised to 250 millisieverts as an emergency measure for Fukushima.
Based on the impact of the accident, the severity level of Fukushima has been revised from 4 to 5, on par with Three Mile Island but below Chernobyl. French authorities have argued that the Fukushima accident should be considered to be at severity level of 6. There is little doubt that most experts now regard the Fukushima accident to be the most serious after Chernobyl, with no guarantee as yet of the crisis dying down.
At the superficial level, the discussion is whether the back-up generators should have been placed in low lying bunkers and should the sea-walls protecting the plant from tsunami have been higher. Similarly, should the spent fuel rods have been stored on the 4th floor of the reactor buildings. This is distracting attention from the larger issue – no two accidents in the nuclear plants have been similar. While it is important to learn from past mistakes, there is no reason to believe that the next major accident will follow the pattern of any previous accident.
It is interesting to note why the Fukushima plant had its back-up power sources in low lying bunkers – they thought the main danger to these came from typhoons or aerial attacks, therefore the bunkers. If a typhoon, which is also quite common in Japan, had hit Fukushima and the back-up generators had been placed at a higher level, we might well be arguing that they should been placed in bunkers and below ground.
A fundamental review of the technology of nuclear plants would indicate that there has been a strong push to increase unit size and life-time of nuclear plants. Increasing unit size may appear to be a simple problem, but it is not. When plan sizes went up from 700 MW to 1300 MW, there were lots of studies pointing out that the plant complexity increases exponentially with size and therefore lot more problems are inherent in increasing unit size. The same issue lies with increasing lifetime of plants – new problems may appear that were not foreseen when the units were designed, making changes difficult or living with known risks.
The reason why the unit sizes and lifetime increases have taken place is mainly because of economics – it is to beat the bad economics of nuclear plants that manufacturers have increased both. It is only by producing more electricity for a given investment and that too calculating a much longer life-span, can the levelled cost of producing electricity for nuclear plants come anywhere near other conventional forms of energy.
It is this increase in complexity and running the plants for much longer that the nuclear plants have been more accident prone. It is also the only technology that we know where the cost of the technology has increased over time. All others, the costs come down as a technology is adopted and widely used. The only exception is nuclear technology; the more we come to know about nuclear technology, higher the cost.
Worse, companies are running their plants beyond the official lifetime. The Fukushima Unit 1 has had its license renewed only recently. Similar vintage plants have been re-licensed for another 20 years in the US. This, in spite of problems with the Mark I vintage of the plants, which have known problems with containment. In 1986, Harold Denton, then the US NRC's top safety official, told an industry trade group that the
"Mark I containment, especially being smaller with lower design pressure, in spite of the suppression pool, if you look at the WASH 1400 safety study, you'll find something like a 90% probability of that containment failing."
As is now known, the containment in Fukushima failed in 2 of the three reactors that had problems with the cooling systems. Fukushima disaster is going to raise questions on all this, particularly the current cosy relationship that the regulators enjoy with the plant operators. TEPCO, the plant operator of the six reactors of Fukushima is a well-known culprit in this regard, and had 17 of its reactors shut-down in 2003 for falsifying safety data.
For India, apart from reviewing the safety of Tarapur plant, which is an even older GE designed LWR, we need to review the design of the Kudankulam reactor for an accident of this type. Here the back-up power may fail due to other reasons – what would happen to the reactor in this case?
Tarapur is an even worse case. Apart from the plant far beyond its original life and the manufacturer having told the Indian authorities not to extend its life, there is also the huge inventory of spent fuel that Tarapur has. The US has neither taken back the spent fuel nor has it allowed India to reprocess this fuel. Even after the India US Nuclear Deal, the “automatic” permission to reprocess as claimed by the Indian side after the India US Nuclear Deal has not materialised. After Fukushima, this must be recognised as an additional danger in the Tarapur plant.
The idea of 10,000 MW nuclear parks as India is planning for its additional 40,000 MW LWR's from Areva, GE, Westinghouse and the Russians seem to be quite insane given what we have seen in Fukushima. Any accident to one reactor poses additional risks to other reactors and make the task of plant safety that much more difficult. If nuclear energy is thought to be necessary, the only way of going about it would be smaller plants, smaller unit sizes that are dispersed. Clustering a number of units in one place is another example of trying to reduce costs and thereby increasing the risks.
It is time the country had a serious debate on nuclear energy. Instead of this being a secretive affair between the PMO and the Department of Atomic Energy (DAE), we need to bring the light of day into this. What are the costs of the plants being negotiated between the suppliers such as Areva and DAE? How is AERB involved in evaluating the safety of the Areva designs? Is there a move now at least to take out AERB from the purview of DAE and make it an independent statutory body?
Without answers to these questions, we could open the country to an even bigger scam than 2G and expose our people to huge risks. The Anrix case shows that the combination of PMO and Department of Space did not work well to control scams. There is no reason to believe that the PMO and DAE will do any better. That is why transparency is a must on nuclear issues – it is not just money we are talking about but also the safety of millions of people in case of an accident. This is the key lesson we have to learn from Fukushima. end quote.

Google Translate

Try a new browser with automatic translation.
Download Google Chrome
English
Japanese

English to Japanese translation

注:私は3月23日に福島で原子炉については、アジアで書かれた以下の記事を見つけました。第二は3月28日に注意してください:私はそれが役に立つかもしれないという可能性を取ることに日本語に変換することにより、非常に、それを混乱させる可能性がありますので、にもかかわらず参考にするには、この記事を見つけました。ですから、日本人の次の資料のページの外観の下にある。私はこれが役立つことを望む。私はそれは思慮newsclick以下の記事からsubject.begin引用に書き込まれるように見えたので、記事全体を含めることを決めた。
 
http://newsclick.in/international/fukushima-%E2は%80%93放射性雲の上核ルネッサンス福島 - 原子力ルネッサンス以上の放射性雲
PrabirのPurkayastha、Newsclick年3月23日
は非常に愚かな3は原子炉で福島の近くのメルトダウンと燃料の火は、世界の国の原子力政策の再を見て保証するものではありません第四の池保持していると主張するだろう。原子力エネルギーは、深刻なオプションが残ることができるが、我々はまた、テーブルを、それを脱いでもオプションされていることを受け入れなければなりません。

福島工場は6原子炉を、そのうちの3は、すでに大規模な地震と津波の前にシャットダウンされていた。残りの3を実行している原子炉は安全に地震が日本を襲ったときに遮断された。地震では、グリッドの電力が得られていないステーションがオフグリッドを行った。前に、いくつかの時間で蹴った低地バンカーにインストールされているバックアップ発電機は、冷却システムの危機を作成し、津波によって取り出される。部分溶融ダウンユニット1、2、3原子炉の燃料棒とそれに伴う水素爆発のその直接の結果であった。ユニット2&3の封じ込めは、放射線を放出、日本の当局の報告に従って、失敗したと思われる。
全ての燃料棒は、冷却が必要残留熱を持っている - 炉心のかどうかを冷却池インチであっても、シャットダウン電源れ、システムが動作する必要が冷却した後。これは、原子炉3と4の冷却池で福島plant.The火災の危機につながるとはバックアップ電源を有する水は沸騰補充することができないという結果であったことがこの障害です。シャットダウンされている他の3原子炉が注目を受けていないことを意味するユニット1、2、3の近くのメルトダウンで、おそらく中古占領。火災は、原子炉、これは新たな脅威として認識され、4の冷却池の中に起動したときにのみです。続いて、同様にユニット番号3のような火事があった。
共同通信は、福島県の状況は依然として困難残っている3月23日に報じた。外部電源は現在、すべてのユニットに復元されているが、問題は、各機器は、電源が投入される前にダメージをテストするということです。主な焦点は、今では、コントロールルーム機能が最低の安全操作と工場でアクティブレベルは、制御室の安全な環境で行うことができる無線の監視を再開することです。今のところ、第1、第2および第3号原子炉の冷却機能、およびプールは、第1、第2、第3、第4のユニットはまだ失われたままで使用済み核燃料保管
に差し迫った危険ダウン炉や池を冷却炉で回避され、溶融が、これは危機を超えていることはいかなる手段によってわけではありません。工場のスタッフにとっての問題は、危険物やひどく破損している機器とされている条件の下にある3つの原子炉の冷却システムと6冷却池を制御することです。これは、被害は4ユニット1の建物からリッピングした地震と津波だけでなく、水素爆発によるものではないです。今でも、工場のスタッフは、原子炉の製造元によって指定された最大を超えて温度を持つ原子炉を冷却するために海の水をポンプです。
ヶ月間続けることができる装置を失敗して原子炉を制御するこのシナリオ。安全な状態に原子炉をもたらす原子炉が廃止されない限りは不可能です。それは最初の4つの原子炉は明らかである使用することはできません。海の水が炉心に置かれると、それは原子炉の終わりです。第4ユニットは、水素爆発があったとも、外出しています。これは、ユニット5および6は、二度と電源を生成するかどうかは疑問です。彼らはほとんどで維持するためにシャットダウン状態でも使用を中止しやすく簡単な場合があります。
温度が上昇することができます任意の時点で、封じ込めは失敗する可能性がさらに爆発が起こる可能性があります。緊急時の状態は、原子炉は、効果的に解除依頼人は、この話ではありませんが、これらの原子炉の廃止措置は、同じ建物の家が学長に池を冷却する燃料を保存している、特にように、簡単にはいかないだろうされるまで続けます。それは主要な問題がある可能性が格納されて燃料棒のこのインベントリです。仕事ができる原子炉のコンクリートのトン未満の原子炉を埋めるのチェルノブイリのソリューションではなく、彼らは地上レベルでは特にとして格納されて燃料棒のために。一つは、建物の4階では、具体的なトンを注ぐことはできません - これはダウンクラッシュ全てをもたらすでしょう。
日本の当局は現在、工場の30キロ半径の危険な放射​​線レベルとも福島県食品の数は高レベルの放射能を報告している。放射線の多くは、より高いレベルは、福島県周辺の海の水に記録されている。明らかに、放射線の危険な金額は公開されている、植物から放出され続けて、我々がリリース金額の測定をしたにもかかわらず。今日でも、オペレータが高レベルの放射線のための植物の建物のいずれかを入力することができませんでした - レベルは、1時間あたり500 millievertsていたと指摘した。これは福島県の緊急対策として250ミリシーベルトに提起されているが、労働者が日本で許可されている放射線の通常の量は、年間100ミリシーベルトです。
事故の影響に基づいて、福島の重大度レベルは、スリーマイル島ではチェルノブイリ以下のパーでは、4から5に修正されています。フランス当局は、福島県の事故は、6の重大度レベルで行われることが考慮されるべきであると主張してきた。多くの専門家は今まで死んで、まだ危機の保証なしで、福島県の事故は、ほとんどのチェルノブイリの後に真剣に考えて疑う余地がない。
表面的なレベルでは、議論がバックアップ発電機は、低地バンカーに配置されているかどうかを津波から植物を保護する海の壁は高くされているはずです。同様に、必要が使用済み核燃料棒は、原​​子炉の建物の4階に格納されている。これは大きな問題から目をそらしている - 原子力発電所には2つの事故は似ている。それは過去の過ちから学ぶことが重要ですが、次の主要な事故は、以前の事故のパターンに従うことを信じる理由がある。
彼らは、これらの主な危険性を考えたため、台風や空中攻撃、バンカーから来た - それは福島工場では低地バンカーでのバックアップ電源を持っていたかは興味深い。日本でも非常に一般的です台風が、福島県、バックアップ発電機は、より高いレベルで置かれていたに当たっていた場合は、私たちも彼らはバンカーに、グランドの下に配置されて必要があることを主張している可能性があります。
原子力発電所の技術の抜本的な見直しは、ユニットのサイズや原子力発電所の寿命を向上させる強力なプッシュがあったことを示すことになる。ユニットサイズを大きくすると、単純な問題に見えることがありますが、そうではありません。プランのサイズは1300メガワット、700メガワットから行ったときは、植物の複雑さは、ユニットのサイズを増やすに固有のもので大きさやそのため多くの問題が指数関数的に増加することを指摘して研究の多くがあった。新たな問題は、変更は困難であるか、または既知のリスクとともに生きること、ユニットが設計されたときに予想されていないように見えることがあります - 同じ問題は、植物の増加の寿命にある。
なぜユニットサイズと寿命の増加が起きている理由は、経済主な理由です - それはメーカーがその両方を増加している原子力発電所の悪い経済学を負かす事です。これは、与えられた投資のためのより多くの電力を生産することによって、あまりにもはるかに長い寿命を計算することが、できる原子力発電所の電気を生産するシロアリのコストは、エネルギーの他の従来の形式の任意の場所の近くに来る。
これは、原子力発電所は事故が発生しやすいされていることをはるかに長いの植物を実行している複雑さが、この増加です。また、我々の技術のコストは時間の経過とともに増加している場所を知っている唯一の技術です。技術が採用されて広く使用されている他のすべては、コストが降りてくる。唯一の例外は、核技術であり、さらに我々はコストが高く、約核技術を知っています。
さらに悪いことに、企業が公式の期間を超えてその植物を実行している。福島1号機はごく最近の更新、そのライセンスがあった。似ているヴィンテージの植物は、米国内の別の20年間の再ライセンスされている。この、マークI封じ込めに問題が知られている植物のヴィンテージの問題にもかかわらず。 1986年、ハロルドデントン氏は、当時の米国NRCの先頭へ保安官、業界グループを言ったことを
"あなたは洗顔1400安全性試験を見ればマークI封じ込め、特に抑制プールにもかかわらず、より低い設計圧力と小さいこと、あなたが失敗したことを封じ込めの90%の確率のようなものを見つけることができます。"
現在知られているように、福島県の封じ込めは、冷却システムに問題を抱えていた三原子炉の2に失敗しました。福島県災害は、すべてこの規制当局は、植物の演算子を使用して楽しむこと、特に、現在の居心地の良い関係に疑問を提起する予定です。東京電力は、福島県の六原子炉のプラントオペレータは、この点でよく知られている原因であり、シャットダウン、2003年安全性に関するデータを改ざんして、その原子炉の17を持っていた。
インドでは、離れても、それ以上の年齢のGEの設計軽水炉ですTarapurプラントの安全性を検討から、我々はこのタイプの事故Kudankulam炉の設計を確認する必要があります。ここではバックアップ電源は、他の理由で失敗する可能性があります - この場合、反応器に何が起こるか?
Tarapurも最悪です。元の生活や製造工場から離れてはるかに超えて、その寿命を延ばすためにはインド当局に話したことを、また、Tarapurが持っている使用済み核燃料の巨大な在庫があります。米国は、どちらも使用済燃料を引き取りがあって、それがこの燃料を再処理するために、インドを許可している。後も、インド米国核協定、インド、米国原子力ディールが具体化された後に、インド側が主張する再処理する"自動"権限が必要です。福島した後、これはTarapur工場で新たな危険として認識する必要があります。
インドと10,000 MWの原子力公園のアイデアはアレバは、GE、ウェスチングハウス社とロシアからの追加40000 MWの軽水炉さ​​んは我々が福島県の何を見ている指定された非常に非常識と思われるの計画を立てている。一反応器にすべての事故は、他の原子炉に新たなリスクをもたらすとすることがはるかに困難プラントの安全性のタスクを。原子力エネルギーが必要であると考えられている場合は、小さい方の植物であり、より小さい単位のサイズになることについて行くの唯一の方法は、分散させた。一箇所での単位数をクラスタリングとコストを削減しようとしていることによりリスクを増加させるもう一つの例である。
これは、国が原子力エネルギーに関する真剣な議論を持っていた時代です。代わりに、PMOと原子力専攻(DAE)の間のこのされて秘密の事件、私たちはこれに日の光を持参する必要があります。何がアレバとDAEなどのサプライヤーの間で交渉されて植物のコストは?どのようにAERBはアレバ設計の安全性を評価するに関与している?動きは、DAEの範囲からAERBを取り出すには、少なくとも、その独立監査ボディメイク今はありますか?
これらの質問に対する答えがなければ、私たちは、2Gよりも大きな詐欺に国を開くことが、巨大なリスクへの私達の人々を公開しています。 Anrixケースは、PMO宇宙学科の組み合わせは、詐欺を制御するためにうまくいかなかったことを示している。 PMOとDAEは任意の有利になるだろうと信じる理由はない。それは私たちが事故の場合には数百万人の約だけでなく、安全性を話しているお金だけではない - それは透明性が核問題をめぐる必要があります理由です。これは、我々は福島から学ばなければならない重要な教訓です。

1 comment:

CrisisMaven said...

Your readers might be interested in the pertinent question, their probably most pressing concern of how to treat their radioactively contaminated drinking water:
http://crisismaven.wordpress.com/2011/03/22/dangers-properties-possible-uses-and-methods-of-purification-of-radioactively-contaminated-drinking-water-e-g-in-japan/
A Japanese translation seems underway, see comment by Takuya there. Maybe someone wants to help with other languages?